118 research outputs found

    Laser-related spectroscopic parameters of NV colour centres in diamond

    Get PDF
    One of the most common impurities in synthetic diamond is single substitutional nitrogen, which is incorporated in the diamond lattice substituting a carbon atom [1]. If the nitrogen is adjacent to a vacancy in the diamond lattice, it forms the nitrogen-vacancy (NV) colour centre (CC) [1]. The negatively charged state of this CC, NV-, is particularly well studied since its quantum properties are suitable for applications such as quantum information processing, single-photon sources and optical magnetometry [2]. NV CCs in the neutral state (NV0) are less widely studied. This CC exhibits broadband luminescence at slightly shorter wavelengths than NV-, and hence is also potentially of interest for tuneable and ultrafast visible laser applications. In this report, we present a detailed study of the laser-related spectroscopic properties of a diamond containing NV0 and NV- CCs

    New paradigms for understanding and step changes in treating active and chronic, persistent apicomplexan infections

    Get PDF
    Toxoplasma gondii, the most common parasitic infection of human brain and eye, persists across lifetimes, can progressively damage sight, and is currently incurable. New, curative medicines are needed urgently. Herein, we develop novel models to facilitate drug development: EGS strain T. gondii forms cysts in vitro that induce oocysts in cats, the gold standard criterion for cysts. These cysts highly express cytochrome b. Using these models, we envisioned, and then created, novel 4-(1H)-quinolone scaffolds that target the cytochrome bc1 complex Qi site, of which, a substituted 5,6,7,8-tetrahydroquinolin-4-one inhibits active infection (IC50, 30 nM) and cysts (IC50, 4 ÎĽM) in vitro, and in vivo (25 mg/kg), and drug resistant Plasmodium falciparum (IC50, <30 nM), with clinically relevant synergy. Mutant yeast and co-crystallographic studies demonstrate binding to the bc1 complex Qi site. Our results have direct impact on improving outcomes for those with toxoplasmosis, malaria, and ~2 billion persons chronically infected with encysted bradyzoites

    Comparative proteomic analysis of spermatozoa isolated by swim-up or density gradient centrifugation

    Get PDF
    Abstract BACKGROUND: Reports about the morphologic and functional characteristics of spermatozoa prepared by density gradient centrifugation (DC) or swim-up (SU) have produced discordant results. We have performed a proteomic comparison of cells prepared by DC and SU providing a molecular insight into the differences between these two methods of sperm cell isolation. METHODS: Protein maps were obtained by 2-dimensional (2-D) separations consisting of isoelectrofocusing (IEF) from pI 3 to 11 followed by SDS-polyacrylamide gel electrophoresis. 2-D gels were stained with Sypro Ruby. Map images of DC and SU spermatozoa were compared using dedicated software. Intensities of a given spot were considered different between DC and SU when their group mean differed by >1.5-fold (p<0.05, Anova). RESULTS: No differences were observed for 853 spots, indicating a 98.7% similarity between DC and SU. Five spots were DC>SU and 1 was SU>DC. Proteins present in 3 of the differential spots could be identified. One DC>SU spot contained lactate dehydrogenase C and gamma-glutamylhydrolase, a second DC>SU spot contained fumarate hydratase and glyceraldehyde-3-phosphate dehydrogenase-2, and a SU>DC spot contained pyruvate kinase M1/M2. CONCLUSIONS: The differences in protein levels found on comparison of DC with SU spermatozoa indicate possible dissimilarities in their glycolytic metabolism and DNA methylation and suggest that DC cells may have a better capacitation potential

    A proteomic approach to investigating gene cluster expression and secondary metabolite functionality in Aspergillus fumigatus.

    Get PDF
    A combined proteomics and metabolomics approach was utilised to advance the identification and characterisation of secondary metabolites in Aspergillus fumigatus. Here, implementation of a shotgun proteomic strategy led to the identification of non-redundant mycelial proteins (n = 414) from A. fumigatus including proteins typically under-represented in 2-D proteome maps: proteins with multiple transmembrane regions, hydrophobic proteins and proteins with extremes of molecular mass and pI. Indirect identification of secondary metabolite cluster expression was also achieved, with proteins (n = 18) from LaeA-regulated clusters detected, including GliT encoded within the gliotoxin biosynthetic cluster. Biochemical analysis then revealed that gliotoxin significantly attenuates H2O2-induced oxidative stress in A. fumigatus (p>0.0001), confirming observations from proteomics data. A complementary 2-D/LC-MS/MS approach further elucidated significantly increased abundance (p<0.05) of proliferating cell nuclear antigen (PCNA), NADH-quinone oxidoreductase and the gliotoxin oxidoreductase GliT, along with significantly attenuated abundance (p<0.05) of a heat shock protein, an oxidative stress protein and an autolysis-associated chitinase, when gliotoxin and H2O2 were present, compared to H2O2 alone. Moreover, gliotoxin exposure significantly reduced the abundance of selected proteins (p<0.05) involved in de novo purine biosynthesis. Significantly elevated abundance (p<0.05) of a key enzyme, xanthine-guanine phosphoribosyl transferase Xpt1, utilised in purine salvage, was observed in the presence of H2O2 and gliotoxin. This work provides new insights into the A. fumigatus proteome and experimental strategies, plus mechanistic data pertaining to gliotoxin functionality in the organism
    • …
    corecore