2,466 research outputs found

    Laser application to measure vertical sea temperature and turbidity, design phase

    Get PDF
    An experiment to test a new method was designed, using backscattered radiation from a laser beam to measure oceanographic parameters in a fraction of a second. Tyndall, Rayleigh, Brillouin, and Raman scattering all are utilized to evaluate the parameters. A beam from a continuous argon ion laser is used together with an interferometer and interference filters to gather the information. The results are checked by direct measurements. Future shipboard and airborne experiments are described

    Penrose-Onsager Criterion Validation in a One-Dimensional Polariton Condensate

    Get PDF
    We perform quantum tomography on one-dimensional polariton condensates, spontaneously occurring in linear disorder valleys in a CdTe planar microcavity sample. By the use of optical interferometric techniques, we determine the first-order coherence function and the amplitude and phase of the order parameter of the condensate, providing a full reconstruction of the single particle density matrix for the polariton system. The experimental data are used as input to theoretically test the consistency of Penrose-Onsager criterion for Bose-Einstein condensation in the framework of nonequilibrium polariton condensates. The results confirm the pertinence and validity of the criterion for a non equilibrium condensed gas.Comment: 5 pages, 4 figure

    The changing pattern of domestic cannabis cultivation in the UK and its impact on the cannabis market

    Get PDF
    With improvements in both technology and information cannabis is being increasingly grown indoors for domestic use, rather than being imported. This study examines 50 cannabis farms detected by an English police force, and examines the characteristics of the 61 suspects associated with them. The study highlights a UK pattern in domestic cultivation, that is moving away from large scale commercial cultivation, at times co-ordinated by South East Asian organised crime groups, to increased cultivation within residential premises by British citizens. Offenders range from those who have no prior criminal history to those who are serious and persistent offenders. The ramifications for law enforcement agencies and policy formers are discussed

    Surface induced selective delamination of amphiphilic ABA block copolymer thin films

    Get PDF
    This is the result of an ongoing collaboration with Dr. N. Sommerdijk’s Biomaterials group at the University of Eindhoven (the Netherlands) and illustrates the close collaboration that exists in pursuing the design and application of novel polymeric materials between the two groups. This details work on a physical phenomenon (selective delamination) and key materials (amphiphilic block copolymers) that have subsequently been applied in the design of novel biomaterials. These results have appeared in a larger body of work including Advanced Materials, Angewandtie Chemie International Edition and the Journal of Materials Chemistry

    To Use or Not to Use: The Design, Implementation and Acceptance of Technology in the Context of Health Care

    Get PDF
    Technology in general, and assistive technology in particular, is considered to be a promising opportunity to address the challenges of an aging population. Nevertheless, in health care, technology is not as widely used as could be expected. In this chapter, an overview is given of theories and models that help to understand this phenomenon. First, the design of (assistive) technologies will be addressed and the importance of human-centered design in the development of new assistive devices will be discussed. Also theories and models are addressed about technology acceptance in general. Specific attention will be given to technology acceptance in healthcare professionals, and the implementation of technology within healthcare organizations. The chapter will be based on the state of the art of scientific literature and will be illustrated with examples from our research in daily practice considering the different perspectives of involved stakeholders

    Direct magneto-optical compression of an effusive atomic beam for high-resolution focused ion beam application

    Get PDF
    An atomic rubidium beam formed in a 70 mm long two-dimensional magneto-optical trap (2D MOT), directly loaded from a collimated Knudsen source, is analyzed using laser-induced fluorescence. The longitudinal velocity distribution, the transverse temperature and the flux of the atomic beam are reported. The equivalent transverse reduced brightness of an ion beam with similar properties as the atomic beam is calculated because the beam is developed to be photoionized and applied in a focused ion beam. In a single two-dimensional magneto-optical trapping step an equivalent transverse reduced brightness of (1.0+0.80.4)(1.0\substack{+0.8-0.4}) ×106\times 10^6 A/(m2^2 sr eV) was achieved with a beam flux equivalent to (0.6+0.30.2)(0.6\substack{+0.3-0.2}) nA. The temperature of the beam is further reduced with an optical molasses after the 2D MOT. This increased the equivalent brightness to (6+52)(6\substack{+5-2})×106\times 10^6 A/(m2^2 sr eV). For currents below 10 pA, for which disorder-induced heating can be suppressed, this number is also a good estimate of the ion beam brightness that can be expected. Such an ion beam brightness would be a six times improvement over the liquid metal ion source and could improve the resolution in focused ion beam nanofabrication.Comment: 10 pages, 8 figures, 1 tabl

    Quantised Vortices in an Exciton-Polariton Fluid

    Get PDF
    One of the most striking quantum effects in a low temperature interacting Bose gas is superfluidity. First observed in liquid 4He, this phenomenon has been intensively studied in a variety of systems for its amazing features such as the persistence of superflows and the quantization of the angular momentum of vortices. The achievement of Bose-Einstein condensation (BEC) in dilute atomic gases provided an exceptional opportunity to observe and study superfluidity in an extremely clean and controlled environment. In the solid state, Bose-Einstein condensation of exciton polaritons has now been reported several times. Polaritons are strongly interacting light-matter quasi-particles, naturally occurring in semiconductor microcavities in the strong coupling regime and constitute a very interesting example of composite bosons. Even though pioneering experiments have recently addressed the propagation of a fluid of coherent polaritons, still no conclusive evidence is yet available of its superfluid nature. In the present Letter, we report the observation of spontaneous formation of pinned quantised vortices in the Bose-condensed phase of a polariton fluid by means of phase and amplitude imaging. Theoretical insight into the possible origin of such vortices is presented in terms of a generalised Gross-Pitaevskii equation. The implications of our observations concerning the superfluid nature of the non-equilibrium polariton fluid are finally discussed.Comment: 14 pages, 4 figure

    Response formulae for n-point correlations in statistical mechanical systems and application to a problem of coarse graining

    Get PDF
    Predicting the response of a system to perturbations is a key challenge in mathematical and natural sciences. Under suitable conditions on the nature of the system, of the perturbation, and of the observables of interest, response theories allow to construct operators describing the smooth change of the invariant measure of the system of interest as a function of the small parameter controlling the intensity of the perturbation. In particular, response theories can be developed both for stochastic and chaotic deterministic dynamical systems, where in the latter case stricter conditions imposing some degree of structural stability are required. In this paper we extend previous findings and derive general response formulae describing how n-point correlations are affected by perturbations to the vector flow. We also show how to compute the response of the spectral properties of the system to perturbations. We then apply our results to the seemingly unrelated problem of coarse graining in multiscale systems: we find explicit formulae describing the change in the terms describing parameterisation of the neglected degrees of freedom resulting from applying perturbations to the full system. All the terms envisioned by the Mori-Zwanzig theory - the deterministic, stochastic, and non-Markovian terms - are affected at 1st order in the perturbation. The obtained results provide a more comprehesive understanding of the response of statistical mechanical systems to perturbations and contribute to the goal of constructing accurate and robust parameterisations and are of potential relevance for fields like molecular dynamics, condensed matter, and geophysical fluid dynamics. We envision possible applications of our general results to the study of the response of climate variability to anthropogenic and natural forcing and to the study of the equivalence of thermostatted statistical mechanical systems

    Collective coherence in planar semiconductor microcavities

    Full text link
    Semiconductor microcavities, in which strong coupling of excitons to confined photon modes leads to the formation of exciton-polariton modes, have increasingly become a focus for the study of spontaneous coherence, lasing, and condensation in solid state systems. This review discusses the significant experimental progress to date, the phenomena associated with coherence which have been observed, and also discusses in some detail the different theoretical models that have been used to study such systems. We consider both the case of non-resonant pumping, in which coherence may spontaneously arise, and the related topics of resonant pumping, and the optical parametric oscillator.Comment: 46 pages, 12 figure
    corecore