148 research outputs found

    Mutant and chimeric recobinant plasminogen activatorsproduction in eukaryotic cellsand preliminary characterization

    Get PDF
    Mutant urokinase-type plasminogen activator (u-PA) genes and hybrid genes between tissue-type plasminogen activator (t-PA) and u-PA have been designed to direct the synthesis of new plasminogen activators and to investigate the structure-function relationship in these molecules. The following classes of constructs were made starting from cDNA encoding human t-PA or u-PA: 1) u-PA mutants in which the Arg156 and Lys158 were substituted with threonine, thus preventing cleavage by thrombin and plasmin; 2) hybrid molecules in which the NH2-terminal regions of t-PA (amino acid residues 1-67, 1-262, or 1-313) were fused with the COOH-terminal region of u-PA (amino acids 136-411, 139-411, or 195-411, respectively); and 3) a hybrid molecule in which the second kringle of t-PA (amino acids 173-262) was inserted between amino acids 130 and 139 of u-PA. In all cases but one, the recombinant proteins, produced by transfected eukaryotic cells, were efficiently secreted in the culture medium. The translation products have been tested for their ability to activate plasminogen after in situ binding to an insolubilized monoclonal antibody directed against urokinase. All recombinant enzymes were shown to be active, except those in which Lys158 of u-PA was substituted with threonine. Recombination of structural regions derived from t-PA, such as the finger, the kringle 2, or most of the A-chain sequences, with the protease part or the complete u-PA molecule did not impair the catalytic activity of the hybrid polypeptides. This observation supports the hypothesis that structural domains in t-PA and u-PA fold independently from one to another

    Radiolocalisation and imaging of stably HPLAP-transfected MO4 tumours with monoclonal antibodies and fragments.

    Get PDF
    Immunotargeting of PLAP-expressing tumours was studied for two radioiodinated, highly specific anti-PLAP monoclonal antibodies, 7E8 and 17E3, differing 10-fold in affinity, as well as for 7E8 F(ab')2 fragments. An anti-CEA monoclonal antibody or anti-CD3 F(ab')2 fragments were used as controls. Specific and non-specific targeting was examined in nude mice simultaneously grafted with PLAP-positive tumours derived from MO4 1-4 cells, and CEA-positive tumours, derived from 5583-S cells. Results indicated that (1) MO4 1-4 tumours, with a stable expression of PLAP on the plasma membrane, represent a useful new in vivo model for immunodirected tumour targeting; (2) differences in antibody affinity for PLAP in vitro are not reflected in antibody avidity for tumour cells in vivo; and (3) excellent selective and specific localisation of the PLAP-positive tumours is achieved when 7E8 F(ab')2 fragments are used. The high tumour/blood ratios (10.7 +/- 3.9 at 46 h after injection) were due to a much faster blood clearance of 7E8 F(ab')2 fragments. At this time point, the mean tumour/non-tumour tissue ratio was as high as 34.5, and the mean specific localisation index was 29.0. As expected, the F(ab')2 fragments provided high tumour imaging efficiency on gamma camera recording. These data imply important potentials of the PLAP/anti-PLAP system for immunolocalisation and therapy in patients, but also emphasise that in vitro criteria alone are not reflected in in vivo tumour localisation capacities of antibodies

    Alkaline Phosphatases: Structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes

    Get PDF
    Our knowledge of the structure and function of alkaline phosphatases has increased greatly in recent years. The crystal structure of the human placental isozyme has enabled us to probe salient features of the mammalian enzymes that differ from those of the bacterial enzymes. The availability of knockout mice deficient in each of the murine alkaline phosphatase isozymes has also given deep insights into their in vivo role. This has been particularly true for probing the biological role of bone alkaline phosphatase during skeletal mineralization. Due to space constraints this mini-review focuses exclusively on structural and functional features of mammalian alkaline phosphatases as identified by crystallography and probed by site-directed mutagenesis and kinetic analysis. An emphasis is also placed on the substrate specificity of alkaline phosphatases, their catalytic properties as phosphohydrolases as well as phosphodiesterases and their structural and functional relatedness to a large superfamily of enzymes that includes nucleotide pyrophosphatase/phosphodiesterase

    Role of Gas6 Receptors in Platelet Signaling during Thrombus Stabilization and Implications for Antithrombotic Therapy

    Get PDF
    Mechanisms regulating thrombus stabilization remain largely unknown. Here, we report that loss of any 1 of the Gas6 receptors (Gas6-Rs), i.e., Tyro3, Axl, or Mer, or delivery of a soluble extracellular domain of Axl that traps Gas6 protects mice against life-threatening thrombosis. Loss of a Gas6-R does not prevent initial platelet aggregation but impairs subsequent stabilization of platelet aggregates, at least in part by reducing “outside-in” signaling and platelet granule secretion. Gas6, through its receptors, activates PI3K and Akt and stimulates tyrosine phosphorylation of the β3 integrin, thereby amplifying outside-in signaling via αIIbβ3. Blocking the Gas6-R–αIIbβ3 integrin cross-talk might be a novel approach to the reduction of thrombosis

    ZBTB12 DNA methylation is associated with coagulation- and inflammation-related blood cell parameters: findings from the Moli-family cohort.

    Get PDF
    Background Zinc finger and BTB domain-containing protein 12 (ZBTB12) is a predicted transcription factor with potential role in hematopoietic development. Recent evidence linked low methylation level of ZBTB12 exon1 to myocardial infarction (MI) risk. However, the role of ZBTB12 in the pathogenesis of MI and cardiovascular disease in general is not yet clarified. We investigated the relation between ZBTB12 methylation and several blood parameters related to cardio-cerebrovascular risk in an Italian family-based cohort. Results ZBTB12 methylation was analyzed on white blood cells from the Moli-family cohort using the Sequenom EpiTYPER MassARRAY (Agena). A total of 13 CpG Sequenom units were analyzed in the small CpG island located in the only translated ZBTB12 exon. Principal component analysis (PCA) was performed to identify groups of CpG units with similar methylation estimates. Linear mixed effect regressions showed a positive association between methylation of ZBTB12 Factor 2 (including CpG units 8, 9–10, 16, 21) and TNF-ɑ stimulated procoagulant activity, a measure of procoagulant and inflammatory potential of blood cells. In addition, we also found a negative association between methylation of ZBTB12 Factor 1 (mainly characterized by CpG units 1, 3–4, 5, 11, and 26) and white blood cell and granulocyte counts. An in silico prediction analysis identified granulopoiesis- and hematopoiesis-specific transcription factors to potentially bind DNA sequences encompassing CpG1, CpG3–4, and CpG11. Conclusions ZBTB12 hypomethylation is linked to shorter TNF-ɑ stimulated whole blood coagulation time and increased WBC and granulocyte counts, further elucidating the possible link between ZBTB12 methylation and cardiovascular disease risk
    corecore