84 research outputs found

    Effect of Sintering Atmosphere on Phase Evolution of Hydroxyapatite Nanocomposite Powders

    Get PDF
    In the present work, pure hydroxyapatite, hydroxyapatite-20 wt% alumina and hydroxyapatite-20 wt% titanium mixtures were pressed and sintered in air, moist, and reduction atmospheres at 1200 C for 2 h. XRD investigations of sintered samples showed that, pure hydroxyapatite is stable in all three atmospheres. But, moist and reduction atmospheres were preferred to suppress the hydroxyapatite decomposition in hydroxyapatite -alumina and hydroxyapatite – titanium nanocomposites, respectively. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3494

    Integration of Gravitational Torques in Cerebellar Pathways Allows for the Dynamic Inverse Computation of Vertical Pointing Movements of a Robot Arm

    Get PDF
    Several authors suggested that gravitational forces are centrally represented in the brain for planning, control and sensorimotor predictions of movements. Furthermore, some studies proposed that the cerebellum computes the inverse dynamics (internal inverse model) whereas others suggested that it computes sensorimotor predictions (internal forward model).This study proposes a model of cerebellar pathways deduced from both biological and physical constraints. The model learns the dynamic inverse computation of the effect of gravitational torques from its sensorimotor predictions without calculating an explicit inverse computation. By using supervised learning, this model learns to control an anthropomorphic robot arm actuated by two antagonists McKibben artificial muscles. This was achieved by using internal parallel feedback loops containing neural networks which anticipate the sensorimotor consequences of the neural commands. The artificial neural networks architecture was similar to the large-scale connectivity of the cerebellar cortex. Movements in the sagittal plane were performed during three sessions combining different initial positions, amplitudes and directions of movements to vary the effects of the gravitational torques applied to the robotic arm. The results show that this model acquired an internal representation of the gravitational effects during vertical arm pointing movements.This is consistent with the proposal that the cerebellar cortex contains an internal representation of gravitational torques which is encoded through a learning process. Furthermore, this model suggests that the cerebellum performs the inverse dynamics computation based on sensorimotor predictions. This highlights the importance of sensorimotor predictions of gravitational torques acting on upper limb movements performed in the gravitational field

    Fabrication of near-zero thermal expansion of fully dense beta-eucryptite ceramics by microwave sintering

    Full text link
    Microwave heating is proposed as non-conventional technique for the sintering of optimal lithium aluminosilicate compositions of β-eucryptite system. The coefficient of thermal expansion and mechanical properties of the sintered samples has been studied under the influence of microwave heating. The ad hoc synthesized β-eucryptite together with the microwave sintering technique developed in this work open the opportunity to produce breakthrough materials with low or negative coefficient of thermal expansion and excellent mechanical properties, as a Young s modulus of 110 GPa. The combination of rapid heating with low energy applied by the microwave technology (eco-friendly process) and the dramatic reduction in cycle time allows densification without glass phase formation. Results of the coefficient of thermal expansion of the β-eucryptite ceramics presented here under cryogenic conditions will be of value, for example, in the future design of new composite materials for space applicationsThe authors would like to thank Dr. Emilio Rayon for performing the nanoindentation analysis in the Materials Technology institute (ITM) of the Polytechnic University of Valencia (UPV) and your financial support received of UPV under Projects SP20120621 and SP20120677 and Spanish Government through the Project MONIDIEL (TEC2008-04109). A. Borrell, acknowledges the Spanish Ministry of Science and Innovation for a Juan de la Cierva contract (JCI-2011-10498) and SCSIE of the University of Valencia.Benavente Martínez, R.; Borrell Tomás, MA.; Salvador Moya, MD.; Garcia-Moreno, O.; Penaranda-Foix, FL.; Catalá Civera, JM. (2014). Fabrication of near-zero thermal expansion of fully dense beta-eucryptite ceramics by microwave sintering. Ceramics International. 40(1):935-941. https://doi.org/10.1016/j.ceramint.2013.06.089S93594140

    Modern microwave methods in solid state inorganic materials chemistry: from fundamentals to manufacturing

    Get PDF
    No abstract available
    corecore