545 research outputs found

    Tailoring Dielectric Properties of Multilayer Composites Using Spark Plasma Sintering

    Get PDF
    A straightforward and simple way to produce well-densified ferroelectric ceramic composites with a full control of both architecture and properties using spark plasma sintering (SPS) is proposed. SPS main outcome is indeed to obtain high densification at relatively low temperatures and short treatment times thus limiting interdiffusion in multimaterials. Ferroelectric/dielectric (BST64/MgO/BST64) multilayer ceramic densified at 97% was obtained, with unmodified Curie temperature, a stack dielectric constant reaching 600, and dielectric losses dropping down to 0.5%, at room-temperature. This result ascertains SPS as a relevant tool for the design of functional materials with tailored properties

    A new approach to the modeling of SHS reactions: Combustion synthesis of transition metal aluminides

    Get PDF
    A recently developed numerical simulation of self-propagating high-temperature synthesis (SHS) using an approach based on microscopic reaction mechanisms and utilizing appropriate physical parameters is applied to the SHS of a fairly large group of transition metal aluminides. The model was utilized to analyze temperature profiles and wave instability and the results were interpreted in terms of chemical and thermal effects. The effect of the particle size of the transition metal, the porosity of the reactant mixtures, and the dilution was iinvestigated. The results are in good agreement with available experimental data

    Ignition and reaction mechanism of Co-Al and Nb-Al intermetallic compounds prepared by combustion synthesis

    Get PDF
    The ignition and propagation mechanism of the self-propagating high-temperature synthesis of several cobalt and niobium aluminides was investigated. Two propagation mechanisms were identified depending on the stoichiometry of the starting mixture. Al-rich compositions propagate through a dissolution-precipitation mechanism while Al-poor mixtures require solid state diffusion. The ignition temperatures were measured by means of microthermocouples in quasi-adiabatic conditions through experiments carried out in thermal explosion mode. Ignition temperatures were found to be characteristic of each system and to depend strongly on reactants particle size. Ignition energies for all compositions were evaluated through a mathematical model

    Nanoscale effects on the ionic conductivity of highly doped bulk nanometric cerium oxide

    Get PDF
    Nanometric ceria powders doped with 30 mol % samaria are consolidated by a high-pressure spark plasma sintering (HP-SPS) method to form > 99 % dense samples with a crystallite size as small as 16.5 nm. A conductivity dependence on grain size was noted: when the grain size was less than 20 nm, only one semicircle in the AC impedance spectra was observed and was attributed to bulk conductivity. In contrast to previous observations on pure ceria, the disappearance of the grain-boundary blocking effect is not associated with mixed conductivity. With annealing and concomitant grain growth, the samples show the presence of a grain-boundary effect

    Dependence of the Ce(III)/Ce(IV) ratio on intracellular localization in ceria nanoparticles internalized by human cells

    Get PDF
    CeO2 nanoparticles (CNPs) have been investigated as promising antioxidant agents with significant activity in the therapy of diseases involving free radicals or oxidative stress. However, the exact mechanism responsible for CNP activity has not been completely elucidated. In particular, in situ evidence of modification of the oxidative state of CNPs in human cells and their evolution during cell internalization and subsequent intracellular distribution has never been presented. In this study we investigated modification of the Ce(iii)/Ce(iv) ratio following internalization in human cells by X-ray absorption near edge spectroscopy (XANES). From this analysis on cell pellets, we observed that CNPs incubated for 24 h showed a significant increase in Ce(iii). By coupling on individual cells synchrotron micro-X-ray fluorescence (μXRF) with micro-XANES (μXANES) we demonstrated that the Ce(iii)/Ce(iv) ratio is also dependent on CNP intracellular localization. The regions with the highest CNP concentrations, suggested to be endolysosomes by transmission electron microscopy, were characterized by Ce atoms in the Ce(iv) oxidation state, while a higher Ce(iii) content was observed in regions surrounding these areas. These observations suggest that the interaction of CNPs with cells involves a complex mechanism in which different cellular areas play different roles

    Current effects on neck growth in the sintering of copper spheres to copper plates by the pulsed electric current method

    Full text link
    The effect of a pulsed dc on the sintering of copper spheres to copper plates was investigated. It was shown that the current had a marked effect on neck growth between the spheres and the plates. The enhancement of sintering under the effect of the current was attributed to electromigration. Microstructural observations on fracture surfaces of necks formed under high currents showed considerable void formation. It was also observed that the current resulted in increased evaporation and the formation of bunched evaporation steps. Formation of these steps and their location relative to the neck were consistent with current density distributions. The results of this investigation provide direct evidence for the role of the current in the sintering in the pulse electric current sintering method. (c) 2007 American Institute of Physics
    corecore