1,609 research outputs found
Recommended from our members
Insights into the Mechanism of Intermediate-Depth Earthquakes from Source Properties as Imaged by Back Projection of Multiple Seismic Phases
This study investigates the spatial and temporal distribution of energy release of large, intermediate-depth earthquakes using a modified back projection technique first used to study the 2004 Sumatra-Andaman megathrust event. Multiple seismic phases are included in the back projection analysis, which provides the capability to determine the energy distribution with respect to depth and time. A total of 22 intermediate-depth earthquakes with moment magnitudes greater than or equal to 6.5 are investigated with hypocentral depths between 100 and 300 km. For most of these events, the vertical extent of energy release is either below the resolution of this study or slightly above . This observation agrees with previous studies that find large, intermediate-depth earthquakes have subhorizontal rupture planes. The results also show a significant portion of the events have multiple rupture planes that are well separated in depth. The closeness in time of the ruptures on separate planes and the distance between the planes suggest dynamic triggering where the P waves from the first rupture initiate rupture on the second plane. We propose that a dehydration embrittlement mechanism combined with preferentially hydrated subhorizontal faults can explain the observations of dominant subhorizontal rupture planes and the frequent occurrence of rupture complexity involving multiple subevents.Earth and Planetary Science
On the formation/dissolution of equilibrium droplets
We consider liquid-vapor systems in finite volume at parameter
values corresponding to phase coexistence and study droplet formation due to a
fixed excess of particles above the ambient gas density. We identify
a dimensionless parameter and a
\textrm{universal} value \Deltac=\Deltac(d), and show that a droplet of the
dense phase occurs whenever \Delta>\Deltac, while, for \Delta<\Deltac, the
excess is entirely absorbed into the gaseous background. When the droplet first
forms, it comprises a non-trivial, \textrm{universal} fraction of excess
particles. Similar reasoning applies to generic two-phase systems at phase
coexistence including solid/gas--where the ``droplet'' is crystalline--and
polymorphic systems. A sketch of a rigorous proof for the 2D Ising lattice gas
is presented; generalizations are discussed heuristically.Comment: An announcement of a forthcoming rigorous work on the 2D Ising model;
to appear in Europhys. Let
Chiral and herringbone symmetry breaking in water-surface monolayers
We report the observation from monolayers of eicosanoic acid in the L′2 phase of three distinct out-of-plane first-order diffraction peaks, indicating molecular tilt in a nonsymmetry direction and hence the absence of mirror symmetry. At lower pressures the molecules tilt in the direction of their nearest neighbors. In this region we find a structural transition, which we tentatively identify as the rotator-herringbone transition L2d−L2h
Geodynamics and Rate of Volcanism on Massive Earth-like Planets
We provide estimates of volcanism versus time for planets with Earth-like
composition and masses from 0.25 to 25 times Earth, as a step toward predicting
atmospheric mass on extrasolar rocky planets. Volcanism requires melting of the
silicate mantle. We use a thermal evolution model, calibrated against Earth, in
combination with standard melting models, to explore the dependence of
convection-driven decompression mantle melting on planet mass. Here we show
that (1) volcanism is likely to proceed on massive planets with plate tectonics
over the main-sequence lifetime of the parent star; (2) crustal thickness (and
melting rate normalized to planet mass) is weakly dependent on planet mass; (3)
stagnant lid planets live fast (they have higher rates of melting than their
plate tectonic counterparts early in their thermal evolution) but die young
(melting shuts down after a few Gyr); (4) plate tectonics may not operate on
high mass planets because of the production of buoyant crust which is difficult
to subduct; and (5) melting is necessary but insufficient for efficient
volcanic degassing - volatiles partition into the earliest, deepest melts,
which may be denser than the residue and sink to the base of the mantle on
young, massive planets. Magma must also crystallize at or near the surface, and
the pressure of overlying volatiles must be fairly low, if volatiles are to
reach the surface. If volcanism is detected in the Tau Ceti system, and tidal
forcing can be shown to be weak, this would be evidence for plate tectonics.Comment: Revised version, accepted by Astrophysical Journa
Development of a thermal ionizer as ion catcher
An effective ion catcher is an important part of a radioactive beam facility
that is based on in-flight production. The catcher stops fast radioactive
products and emits them as singly charged slow ions. Current ion catchers are
based on stopping in He and H gas. However, with increasing intensity of
the secondary beam the amount of ion-electron pairs created eventually prevents
the electromagnetic extraction of the radioactive ions from the gas cell. In
contrast, such limitations are not present in thermal ionizers used with the
ISOL production technique. Therefore, at least for alkaline and alkaline earth
elements, a thermal ionizer should then be preferred. An important use of the
TRIP facility will be for precision measurements using atom traps. Atom
trapping is particularly possible for alkaline and alkaline earth isotopes. The
facility can produce up to 10 s of various Na isotopes with the
in-flight method. Therefore, we have built and tested a thermal ionizer. An
overview of the operation, design, construction, and commissioning of the
thermal ionizer for TRIP will be presented along with first results for
Na and Na.Comment: 10 pages, 4 figures, XVth International Conference on Electromagnetic
Isotope Separators and Techniques Related to their Applications (EMIS 2007
Properties of Physical Systems: Transient Singularities on Borders and Surface Transitive Zones
Certain alternative properties of physical systems are describable by
supports of arguments of response functions (e.g. light cone, borders of media)
and expressed by projectors; corresponding equations of restraints lead to
dispersion relations, theorems of counting, etc. As supports are measurable,
their absolutely strict borders contradict the spirit of quantum theory and
their quantum evolution leading to appearance of subtractions or certain needed
flattening would be considered. Flattening of projectors introduce transitive
zones that can be examined as a specification of adiabatic hypothesis or the
Bogoliubov regulatory function in QED. For demonstration of their possibilities
the phenomena of refraction and reflection of electromagnetic wave are
considered; they show, in particular, the inevitable appearing of double
electromagnetic layers on all surfaces that formerly were repeatedly
postulated, etc. Quantum dynamics of projectors proves the neediness of
subtractions that usually are artificially adding and express transient
singularities and zones in squeezed forms.Comment: 12 p
Mechanical tuning of the evaporation rate of liquid on crossed fibers
We investigate experimentally the drying of a small volume of perfectly
wetting liquid on two crossed fibers. We characterize the drying dynamics for
the three liquid morphologies that are encountered in this geometry: drop,
column and a mixed morphology, in which a drop and a column coexist. For each
morphology, we rationalize our findings with theoretical models that capture
the drying kinetics. We find that the evaporation rate depends significantly on
the liquid morphology and that the drying of liquid column is faster than the
evaporation of the drop and the mixed morphology for a given liquid volume.
Finally, we illustrate that shearing a network of fibers reduces the angle
between them, changes the morphology towards the column state, and so enhances
the drying rate of a volatile liquid deposited on it
Membranes by the Numbers
Many of the most important processes in cells take place on and across
membranes. With the rise of an impressive array of powerful quantitative
methods for characterizing these membranes, it is an opportune time to reflect
on the structure and function of membranes from the point of view of biological
numeracy. To that end, in this article, I review the quantitative parameters
that characterize the mechanical, electrical and transport properties of
membranes and carry out a number of corresponding order of magnitude estimates
that help us understand the values of those parameters.Comment: 27 pages, 12 figure
Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity
Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)
The Stern-Gerlach Experiment Revisited
The Stern-Gerlach-Experiment (SGE) of 1922 is a seminal benchmark experiment
of quantum physics providing evidence for several fundamental properties of
quantum systems. Based on today's knowledge we illustrate the different
benchmark results of the SGE for the development of modern quantum physics and
chemistry.
The SGE provided the first direct experimental evidence for angular momentum
quantization in the quantum world and thus also for the existence of
directional quantization of all angular momenta in the process of measurement.
It measured for the first time a ground state property of an atom, it produced
for the first time a `spin-polarized' atomic beam, it almost revealed the
electron spin. The SGE was the first fully successful molecular beam experiment
with high momentum-resolution by beam measurements in vacuum. This technique
provided a new kinematic microscope with which inner atomic or nuclear
properties could be investigated.
The original SGE is described together with early attempts by Einstein,
Ehrenfest, Heisenberg, and others to understand directional quantization in the
SGE. Heisenberg's and Einstein's proposals of an improved multi-stage SGE are
presented. The first realization of these proposals by Stern, Phipps, Frisch
and Segr\`e is described. The set-up suggested by Einstein can be considered an
anticipation of a Rabi-apparatus. Recent theoretical work is mentioned in which
the directional quantization process and possible interference effects of the
two different spin states are investigated.
In full agreement with the results of the new quantum theory directional
quantization appears as a general and universal feature of quantum
measurements. One experimental example for such directional quantization in
scattering processes is shown. Last not least, the early history of the
`almost' discovery of the electron spin in the SGE is revisited.Comment: 50pp, 17 fig
- …