653 research outputs found

    Yeast Protein Interactome Topology Provides Framework for Coordinated-Functionality

    Get PDF
    The architecture of the network of protein-protein physical interactions in Saccharomyces cerevisiae is exposed through the combination of two complementary theoretical network measures, betweenness centrality and `Q-modularity'. The yeast interactome is characterized by well-defined topological modules connected via a small number of inter-module protein interactions. Should such topological inter-module connections turn out to constitute a form of functional coordination between the modules, we speculate that this coordination is occurring typically in a pair-wise fashion, rather than by way of high-degree hub proteins responsible for coordinating multiple modules. The unique non-hub-centric hierarchical organization of the interactome is not reproduced by gene duplication-and-divergence stochastic growth models that disregard global selective pressures.Comment: Final, revised version. 13 pages. Please see Nucleic Acids open access article for higher resolution figure

    Intrinsic Disorder Is a Common Feature of Hub Proteins from Four Eukaryotic Interactomes

    Get PDF
    Recent proteome-wide screening approaches have provided a wealth of information about interacting proteins in various organisms. To test for a potential association between protein connectivity and the amount of predicted structural disorder, the disorder propensities of proteins with various numbers of interacting partners from four eukaryotic organisms (Caenorhabditis elegans, Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens) were investigated. The results of PONDR VL-XT disorder analysis show that for all four studied organisms, hub proteins, defined here as those that interact with ≥10 partners, are significantly more disordered than end proteins, defined here as those that interact with just one partner. The proportion of predicted disordered residues, the average disorder score, and the number of predicted disordered regions of various lengths were higher overall in hubs than in ends. A binary classification of hubs and ends into ordered and disordered subclasses using the consensus prediction method showed a significant enrichment of wholly disordered proteins and a significant depletion of wholly ordered proteins in hubs relative to ends in worm, fly, and human. The functional annotation of yeast hubs and ends using GO categories and the correlation of these annotations with disorder predictions demonstrate that proteins with regulation, transcription, and development annotations are enriched in disorder, whereas proteins with catalytic activity, transport, and membrane localization annotations are depleted in disorder. The results of this study demonstrate that intrinsic structural disorder is a distinctive and common characteristic of eukaryotic hub proteins, and that disorder may serve as a determinant of protein interactivity

    The arithmetic-geometric scaling spectrum for continued fractions

    Full text link
    To compare continued fraction digits with the denominators of the corresponding approximants we introduce the arithmetic-geometric scaling. We will completely determine its multifractal spectrum by means of a number theoretical free energy function and show that the Hausdorff dimension of sets consisting of irrationals with the same scaling exponent coincides with the Legendre transform of this free energy function. Furthermore, we identify the asymptotic of the local behaviour of the spectrum at the right boundary point and discuss a connection to the set of irrationals with continued fraction digits exceeding a given number which tends to infinity.Comment: 22 pages, 1 figur

    On the irrationality measure function in average

    Full text link
    We study asymptotics for the intergal of irrationality measure functions.Comment: Summary in English, fulltext in Russia

    New insights into protein-protein interaction data lead to increased estimates of the S. cerevisiae interactome size

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As protein interactions mediate most cellular mechanisms, protein-protein interaction networks are essential in the study of cellular processes. Consequently, several large-scale interactome mapping projects have been undertaken, and protein-protein interactions are being distilled into databases through literature curation; yet protein-protein interaction data are still far from comprehensive, even in the model organism <it>Saccharomyces cerevisiae</it>. Estimating the interactome size is important for evaluating the completeness of current datasets, in order to measure the remaining efforts that are required.</p> <p>Results</p> <p>We examined the yeast interactome from a new perspective, by taking into account how thoroughly proteins have been studied. We discovered that the set of literature-curated protein-protein interactions is qualitatively different when restricted to proteins that have received extensive attention from the scientific community. In particular, these interactions are less often supported by yeast two-hybrid, and more often by more complex experiments such as biochemical activity assays. Our analysis showed that high-throughput and literature-curated interactome datasets are more correlated than commonly assumed, but that this bias can be corrected for by focusing on well-studied proteins. We thus propose a simple and reliable method to estimate the size of an interactome, combining literature-curated data involving well-studied proteins with high-throughput data. It yields an estimate of at least 37, 600 direct physical protein-protein interactions in <it>S. cerevisiae</it>.</p> <p>Conclusions</p> <p>Our method leads to higher and more accurate estimates of the interactome size, as it accounts for interactions that are genuine yet difficult to detect with commonly-used experimental assays. This shows that we are even further from completing the yeast interactome map than previously expected.</p

    Protein–Protein Interactions Essentials: Key Concepts to Building and Analyzing Interactome Networks

    Get PDF
    8 páginas, 3 figuras, 1 tabla.-- This is an open-access article distributed under the terms of the Creative Commons Attribution License.This work has been supported by funds provided by the Local Government Junta de Castilla y León (JCyL, ref. project: CSI07A09), by the Spanish Ministry of Science and Innovation (MICINN - ISCiii, ref. projects: PI061153 and PS09/00843) and by the European Commission Research Grant PSIMEx (ref. FP7-HEALTH-2007-223411).Peer Reviewe
    corecore