216 research outputs found

    Remotely acting SMCHD1 gene regulatory elements: in silico prediction and identification of potential regulatory variants in patients with FSHD

    Get PDF
    Background: Facioscapulohumeral dystrophy (FSHD) is commonly associated with contraction of the D4Z4 macro-satellite repeat on chromosome 4q35 (FSHD1) or mutations in the SMCHD1 gene (FSHD2). Recent studies have shown that the clinical manifestation of FSHD1 can be modified by mutations in the SMCHD1 gene within a given family. The absence of either D4Z4 contraction or SMCHD1 mutations in a small cohort of patients suggests that the disease could also be due to disruption of gene regulation. In this study, we postulated that mutations responsible for exerting a modifier effect on FSHD might reside within remotely acting regulatory elements that have the potential to interact at a distance with their cognate gene promoter via chromatin looping. To explore this postulate, genome-wide Hi-C data were used to identify genomic fragments displaying the strongest interaction with the SMCHD1 gene. These fragments were then narrowed down to shorter regions using ENCODE and FANTOM data on transcription factor binding sites and epigenetic marks characteristic of promoters, enhancers and silencers

    The Facioscapulohumeral muscular dystrophy region on 4qter and the homologous locus on 10qter evolved independently under different evolutionary pressure

    Get PDF
    BACKGROUND: The homologous 4q and 10q subtelomeric regions include two distinctive polymorphic arrays of 3.3 kb repeats, named D4Z4. An additional BlnI restriction site on the 10q-type sequence allows to distinguish the chromosomal origin of the repeats. Reduction in the number of D4Z4 repeats below a threshold of 10 at the 4q locus is tightly linked to Facioscapulohumeral Muscular Dystrophy (FSHD), while similar contractions at 10q locus, are not pathogenic. Sequence variations due to the presence of BlnI-sensitive repeats (10q-type) on chromosome 4 or viceversa of BlnI-resistant repeats (4q-type) on chromosome 10 are observed in both alleles. RESULTS: We analysed DNA samples from 116 healthy subiects and 114 FSHD patients and determined the size distributions of polymorphic 4q and 10q alleles, the frequency and the D4Z4 repeat assortment of variant alleles, and finally the telomeric sequences both in standard and variant alleles. We observed the same frequency and types of variant alleles in FSHD patients and controls, but we found marked differences between the repeat arrays of the 4q and 10q chromosomes. In particular we detected 10q alleles completely replaced by the 4q subtelomeric region, consisting in the whole set of 4q-type repeats and the distal telomeric markers. However the reciprocal event, 10q-type subtelomeric region on chromosome 4, was never observed. At 4q locus we always identified hybrid alleles containing a mixture of 4q and 10q-type repeats. CONCLUSION: The different size distribution and different structure of 10q variant alleles as compared with 4q suggests that these loci evolved in a different manner, since the 4q locus is linked to FSHD, while no inheritable disease is associated with mutations in 10qter genomic region. Hybrid alleles on chromosome 4 always retain a minimum number of 4q type repeats, as they are probably essential for maintaining the structural and functional properties of this subtelomeric region. In addition we found: i) several instances of variant alleles that could be misinterpreted and interfere with a correct diagnosis of FSHD; ii) the presence of borderline alleles in the range of 30–40 kb that carried a qA type telomere and were not associated with the disease

    De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development

    Get PDF
    Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD

    Breakfast partly restores the anti-inflammatory function of high-density lipoproteins from patients with type 2 diabetes mellitus

    Get PDF
    BACKGROUND AND AIMS: High-density lipoproteins (HDL) of patients with type 2 diabetes mellitus (T2DM) have impaired anti-inflammatory activities. The anti-inflammatory activity of HDL has been determined ex vivo after isolation by different methods from blood mostly obtained after overnight fasting. We first determined the effect of the HDL isolation method, and subsequently the effect of food intake on the anti-inflammatory function of HDL from T2DM patients. METHODS: Blood was collected from healthy controls and T2DM patients after an overnight fast, and from T2DM patients 3 h after breakfast (n = 17 each). HDL was isolated by a two-step density gradient ultracentrifugation in iodixanol (HDL(DGUC2)), by sequential salt density flotation (HDL(SEQ)) or by PEG precipitation (HDL(PEG)). The anti-inflammatory function of HDL was determined by the reduction of the TNFα-induced expression of VCAM-1 in human coronary artery endothelial cells (HCAEC) and retinal endothelial cells (REC). RESULTS: HDL isolated by the three different methods from healthy controls inhibited TNFα-induced VCAM-1 expression in HCAEC. With apoA-I at 0.7 μM, HDL(DGUC2) and HDL(SEQ) were similarly effective (16% versus 14% reduction; n = 3; p > 0.05) but less effective than HDL(PEG) (28%, p < 0.05). Since ultracentrifugation removes most of the unbound plasma proteins, we used HDL(DGUC2) for further experiments. With apoA-I at 3.2 μM, HDL from fasting healthy controls and T2DM patients reduced TNFα-induced VCAM-1 expression in HCAEC by 58 ± 13% and 51 ± 20%, respectively (p = 0.35), and in REC by 42 ± 13% and 25 ± 18%, respectively (p < 0.05). Compared to preprandial HDL, postprandial HDL from T2DM patients reduced VCAM-1 expression by 56 ± 16% (paired test: p < 0.001) in HCAEC and by 34 ± 13% (paired test: p < 0.05) in REC. CONCLUSIONS: The ex vivo anti-inflammatory activity of HDL is affected by the HDL isolation method. Two-step ultracentrifugation in an iodixanol gradient is a suitable method for HDL isolation when testing HDL anti-inflammatory function. The anti-inflammatory activity of HDL from overnight fasted T2DM patients is significantly impaired in REC but not in HCAEC. The anti-inflammatory function of HDL is partly restored by food intake

    Cerebral near-infrared spectroscopy monitoring versus treatment as usual for extremely preterm infants : a protocol for the SafeBoosC randomised clinical phase III trial

    Get PDF
    Background: Cerebral oxygenation monitoring may reduce the risk of death and neurologic complications in extremely preterm infants, but no such effects have yet been demonstrated in preterm infants in sufficiently powered randomised clinical trials. The objective of the SafeBoosC III trial is to investigate the benefits and harms of treatment based on near-infrared spectroscopy (NIRS) monitoring compared with treatment as usual for extremely preterm infants. Methods/design: SafeBoosC III is an investigator-initiated, multinational, randomised, pragmatic phase III clinical trial. Inclusion criteria will be infants born below 28 weeks postmenstrual age and parental informed consent (unless the site is using 'opt-out' or deferred consent). Exclusion criteria will be no parental informed consent (or if 'opt-out' is used, lack of a record that clinical staff have explained the trial and the 'opt-out' consent process to parents and/or a record of the parents' decision to opt-out in the infant's clinical file); decision not to provide full life support; and no possibility to initiate cerebral NIRS oximetry within 6 h after birth. Participants will be randomised 1:1 into either the experimental or control group. Participants in the experimental group will be monitored during the first 72 h of life with a cerebral NIRS oximeter. Cerebral hypoxia will be treated according to an evidence-based treatment guideline. Participants in the control group will not undergo cerebral oxygenation monitoring and will receive treatment as usual. Each participant will be followed up at 36 weeks postmenstrual age. The primary outcome will be a composite of either death or severe brain injury detected on any of the serial cranial ultrasound scans that are routinely performed in these infants up to 36 weeks postmenstrual age. Severe brain injury will be assessed by a person blinded to group allocation. To detect a 22% relative risk difference between the experimental and control group, we intend to randomise a cohort of 1600 infants. Discussion: Treatment guided by cerebral NIRS oximetry has the potential to decrease the risk of death or survival with severe brain injury in preterm infants. There is an urgent need to assess the clinical effects of NIRS monitoring among preterm neonates. Trial registration: ClinicalTrial.gov, NCT03770741. Registered 10 December 2018

    Remodeling of the chromatin structure of the facioscapulohumeral muscular dystrophy (FSHD) locus and upregulation of FSHD-related gene 1 (FRG1) expression during human myogenic differentiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder associated with the partial deletion of integral numbers of 3.3 kb D4Z4 DNA repeats within the subtelomere of chromosome 4q. A number of candidate FSHD genes, adenine nucleotide translocator 1 gene (<it>ANT1</it>), FSHD-related gene 1 (<it>FRG1</it>), <it>FRG2 </it>and <it>DUX4c</it>, upstream of the D4Z4 array (FSHD locus), and double homeobox chromosome 4 (<it>DUX4</it>) within the repeat itself, are upregulated in some patients, thus suggesting an underlying perturbation of the chromatin structure. Furthermore, a mouse model overexpressing <it>FRG1 </it>has been generated, displaying skeletal muscle defects.</p> <p>Results</p> <p>In the context of myogenic differentiation, we compared the chromatin structure and tridimensional interaction of the D4Z4 array and <it>FRG1 </it>gene promoter, and <it>FRG1 </it>expression, in control and FSHD cells. The <it>FRG1 </it>gene was prematurely expressed during FSHD myoblast differentiation, thus suggesting that the number of D4Z4 repeats in the array may affect the correct timing of <it>FRG1 </it>expression. Using chromosome conformation capture (3C) technology, we revealed that the <it>FRG1 </it>promoter and D4Z4 array physically interacted. Furthermore, this chromatin structure underwent dynamic changes during myogenic differentiation that led to the loosening of the <it>FRG1</it>/4q-D4Z4 array loop in myotubes. The <it>FRG1 </it>promoter in both normal and FSHD myoblasts was characterized by H3K27 trimethylation and Polycomb repressor complex binding, but these repression signs were replaced by H3K4 trimethylation during differentiation. The D4Z4 sequences behaved similarly, with H3K27 trimethylation and Polycomb binding being lost upon myogenic differentiation.</p> <p>Conclusion</p> <p>We propose a model in which the D4Z4 array may play a critical chromatin function as an orchestrator of <it>in cis </it>chromatin loops, thus suggesting that this repeat may play a role in coordinating gene expression.</p

    Thyrotrophin and thyroxine support immune homeostasis in humans

    Get PDF
    The endocrine and the immune systems interact by sharing receptors for hormones and cytokines, cross-control and feedback mechanisms. To date, no comprehensive study has assessed the impact of thyroid hormones on immune homeostasis. By studying immune phenotype (cell populations, antibody concentrations, circulating cytokines, adipokines and acute-phase proteins, monocyte-platelet interactions and cytokine production capacity) in two large independent cohorts of healthy volunteers of Western European descent from the Human Functional Genomics Project (500FG and 300BCG cohorts), we identified a crucial role of the thyroid hormone thyroxin (T4) and thyroid-stimulating hormone (TSH) on the homeostasis of lymphocyte populations. TSH concentrations were strongly associated with multiple populations of both effector and regulatory T cells, whereas B-cell populations were significantly associated with free T4 (fT4). In contrast, fT4 and TSH had little impact on myeloid cell populations and cytokine production capacity. Mendelian randomization further supported the role of fT4 for lymphocyte homeostasis. Subsequently, using a genomics approach, we identified genetic variants that influence both fT4 and TSH concentrations and immune responses, and gene set enrichment pathway analysis showed enrichment of fT4-affected gene expression in B-cell function pathways, including the CD40 pathway, further supporting the importance of fT4 in the regulation of B-cell function. In conclusion, we show that thyroid function controls the homeostasis of the lymphoid cell compartment. These findings improve our understanding of the immune responses and open the door for exploring and understanding the role of thyroid hormones in the lymphocyte function during disease

    DUX4c Is Up-Regulated in FSHD. It Induces the MYF5 Protein and Human Myoblast Proliferation

    Get PDF
    Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contractions of the D4Z4 repeat array in 4q35. We have previously identified a double homeobox gene (DUX4) within each D4Z4 unit that encodes a transcription factor expressed in FSHD but not control myoblasts. DUX4 and its target genes contribute to the global dysregulation of gene expression observed in FSHD. We have now characterized the homologous DUX4c gene mapped 42 kb centromeric of the D4Z4 repeat array. It encodes a 47-kDa protein with a double homeodomain identical to DUX4 but divergent in the carboxyl-terminal region. DUX4c was detected in primary myoblast extracts by Western blot with a specific antiserum, and was induced upon differentiation. The protein was increased about 2-fold in FSHD versus control myotubes but reached 2-10-fold induction in FSHD muscle biopsies. We have shown by Western blot and by a DNA-binding assay that DUX4c over-expression induced the MYF5 myogenic regulator and its DNA-binding activity. DUX4c might stabilize the MYF5 protein as we detected their interaction by co-immunoprecipitation. In keeping with the known role of Myf5 in myoblast accumulation during mouse muscle regeneration DUX4c over-expression activated proliferation of human primary myoblasts and inhibited their differentiation. Altogether, these results suggested that DUX4c could be involved in muscle regeneration and that changes in its expression could contribute to the FSHD pathology

    Cue-Reminders to Prevent Health-Risk Behaviors: A Systematic Review

    Get PDF
    Introduction: It has been proposed that the use of cue-reminders may increase the effectiveness of interventions that aim to prevent health-risk behaviors (i.e., having unsafe sex, unhealthy dietary intake, lack of physical activity, and substance use). The aim of this systematic review was to explore whether there is evidence supporting this proposition, and to explore how cue-reminders are applied in health-risk behavior interventions to date.Method: We systemically reviewed (non-) randomized trials that examine differences in health-risk behaviors between an experimental group receiving an intervention with exposure to a cue-reminder and a control group receiving the intervention without such cue.Results: Six studies were eligible for inclusion. The studies differed in sample and research design, and how the cue-reminder was applied. One study demonstrated a positive and small effect, and one study found a negative medium effect of the cue-reminder. In the remaining studies, the effect sizes were positive but non-significant.Discussion: It is unclear whether complementing health-risk behavior interventions with cue-reminders increases the effectiveness of these interventions. Further investigation and experimentation into the efficiency and effectiveness of cue-reminders is needed before health-risk behavior interventions are complemented with cue-reminders

    Expression Profiling of FSHD-1 and FSHD-2 Cells during Myogenic Differentiation Evidences Common and Distinctive Gene Dysregulation Patterns

    Get PDF
    BACKGROUND: Determine global gene dysregulation affecting 4q-linked (FSHD-1) and non 4q-linked (FSHD-2) cells during early stages of myogenic differentiation. This approach has been never applied to FSHD pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: By in vitro differentiation of FSHD-1 and FSHD-2 myoblasts and gene chip analysis we derived that gene expression profile is altered only in FSHD-1 myoblasts and FSHD-2 myotubes. The changes seen in FSHD-1 regarded a general defect in cell cycle progression, probably due to the upregulation of myogenic markers PAX3 and MYOD1, and a deficit of factors (SUV39H1 and HMGB2) involved in D4Z4 chromatin conformation. On the other hand, FSHD-2 mytubes were characterized by a general defect in RNA metabolism, protein synthesis and degradation and, to a lesser extent, in cell cycle. Common dysregulations regarded genes involved in response to oxidative stress and in sterol biosynthetic process. Interestingly, our results also suggest that miRNAs might be implied in both FSHD-1 and FSHD-2 gene dysregulation. Finally, in both cell differentiation systems, we did not observe a gradient of altered gene expression throughout the 4q35 chromosome. CONCLUSIONS/SIGNIFICANCE: FSHD-1 and FSHD-2 cells showed, in different steps of myogenic differentiation, a global deregulation of gene expression rather than an alteration of expression of 4q35 specific genes. In general, FSHD-1 and FSHD-2 global gene deregulation interested common and distinctive biological processes. In this regard, defects of cell cycle progression (FSHD-1 and to a lesser extent FSHD-2), protein synthesis and degradation (FSHD-2), response to oxidative stress (FSHD-1 and FSHD-2), and cholesterol homeostasis (FSHD-1 and FSHD-2) may in general impair a correct myogenesis. Taken together our results recapitulate previously reported defects of FSHD-1, and add new insights into the gene deregulation characterizing both FSHD-1 and FSHD-2, in which miRNAs may play a role
    corecore