391 research outputs found
Thermodynamic analysis and subscale modeling of space-based orbit transfer vehicle cryogenic propellant resupply
The resupply of the cryogenic propellants is an enabling technology for spacebased orbit transfer vehicles. As part of the NASA Lewis ongoing efforts in microgravity fluid management, thermodynamic analysis and subscale modeling techniques were developed to support an on-orbit test bed for cryogenic fluid management technologies. Analytical results have shown that subscale experimental modeling of liquid resupply can be used to validate analytical models when the appropriate target temperature is selected to relate the model to its prototype system. Further analyses were used to develop a thermodynamic model of the tank chilldown process which is required prior to the no-vent fill operation. These efforts were incorporated into two FORTRAN programs which were used to present preliminary analyticl results
Gating of L-type Ca2+ channels in embryonic chick ventricle cells: dependence on voltage, current and channel density
1. L-type calcium channels in embryonic chick heart ventricle have voltage-dependent, time-variant kinetics when they conduct inward currents carried by 20 mM-Ba2+. Depolarizing the membrane from -20 to 20 mV increases mean open time from 1.4 to 4.2 ms. Mean open time increases monotonically with voltage. The single-channel conductance, 18 +/- 2 pS, is approximately linear over this voltage range, and the extrapolated reversal potential is 38 +/- 5 mV. 2. In cell-attached patches with five or more L-type Ca2+ channels in the patch, the currents elicited by 500 ms depolarizing steps, from a -80 mV holding potential, inactivate rapidly and have large tail currents. In the same patch, currents from a -40 mV holding potential are smaller, inactivate more slowly, and have practically no tail currents. 3. In cell-attached patches containing one of two L-type Ca2+ channels, currents from -80 or -40 mV are virtually identical, and they are similar to the currents from multichannel patches held at -40 mV. 4. The voltage-dependent, time-variant kinetics of individual L-type Ca2+ channels are unaltered if the patch is removed from the cell and forms an inside-out configuration. In these experiments the internal membrane was bathed with an artificial, intracellular-like solution containing no phosphorylating enzymes or substrates. 5. Cells bathed in 20 mM-Ba2+ solutions and held at -80 mV have currents with an early phase that inactivates in tens of milliseconds, a late phase that inactivates in hundreds of milliseconds, and a large, slow tail current. Currents from -40 mV have only the late phase and practically no tails. However, if the maximum current is less than 0.1 pA pF-1, records from either -80 or -40 mV are virtually identical, and they are similar to currents from cells with higher channel density held at -40 mV. Furthermore, if cells are stimulated before full recovery from inactivation, the reduced current is accompanied by slower inactivation. 6. Whole-cell currents in 1.5 mM-Ca2+ solutions are entirely abolished by addition of 20 microM-nifedipine, and they are enhanced 2-3 times by addition of 30 microM-cyclic AMP and 3 mM-ATP to the whole-cell recording electrode. The whole-cell currents in 20 mM-Ba2+ solutions are also completely blocked by 20 microM-nifedipine, regardless of kinetics or holding potential. Thus, by definition, the cells we are studying contain only L-type channels
Cover crops management for no-till grain crop production
"Cover crops are forage grasses, legumes, small grains or other crops grown to protect and improve the soil. Cover crops are becoming increasingly important in Missouri, because soil losses of 10. 9 tons of cropland per acre are occurring annually through sheet and rill erosion. About 20 cents worth of nutrients is lost in each ton of soil, which means a loss of over 25 million in fertilizer each year."--First page.Z.R. Helsel, M. DeFelice, D. Buchholz (Department of Agronomy College of Agriculture)New 11/86/8
Length of online course and student satisfaction, perceived learning, and academic performance
This research presents findings from a two-part study. In the first part, graduate students taking online courses were given a course evaluation form. Student responses from online abbreviated summer sessions were compared to student responses from online full-semester courses. Both the intensive and full-semester courses were taught by the same professor and both had identical requirements in terms of assignments and exams. The independent variable was the length of time taken to complete the requirements, with the dependent variables being satisfaction with the course, perceived learning, and academic performance. A statistical analysis of the data found significant differences in a number of areas
Potential Mercurian Analogues: Aubrite and Enstatite Chondrite Impact Melt Meteorites
The MESSENGER (MErcury Surface Space ENvironment GEochemistry and Ranging Spacecraft) mission provided new data that have helped us better constrain the surficial mineralogy and composition of Mercury. Mercury has an extremely low oxygen fugacity (f O2) (Iron Wustite (IW) -7.3 to IW -2.6), and at these unique conditions, elements, which usually exhibit lithophile behavior on Earth, can exhibit chalcophile or siderophile behavior on Mercury. No samples have been returned from Mercury; therefore, we must study candidate meteorite analogs to better understand the formation conditions of minerals inferred to be present at the Mercurian surface and Mercurian magmatic processes. In this study, we present a comprehensive analysis of a representative suite of eight aubrites and four enstatite chondrite impact melts (ECIM), which both have a similar f O2 to Mercury, and contain exotic sulfides that have been inferred to be present at the Mercurian surface. These characteristics allow us to assess their relevance for understanding the mineralogy and magmatic processes of Mercury. The ECIM were previously classified as aubrites, but we show that they are actually ECIM with a potential EH (high enstatite) parent body origin due to the presence of niningerite, Si-enriched kamacite, and uniform Ni in schreibersite. We propose that, with respect to the aubrites, the ECIM represent an ideal candidate for Mercurian studies due to their mineralogy and modal mineralogy. Compared to the aubrites, the ECIM samples do not contain forsterite or diopside, show a poorer sulfide diversity, contain graphite, and have a higher volume percentage of metal phases. Although the Mercurian surface contains forsterite and diopside, graphite and a similar amount of metal and sulfides as seen in the ECIM are inferred to be present on Mercury. According to the calculated normative Mercurian mineralogy, both candidate meteorites are most analogous to the Caloris Basin and Northern Plains Lower Mg regions
Geographic variation in polyandry of the Eastern Honey Bee, Apis cerana, in Thailand
The repeated evolution of extreme polyandry in advanced social insects is exceptional and its explanation has attracted significant attention. However, most reported estimates of the number of matings are derived from limited sampling. Temporal and geographic variation in mating behavior of social insects has not been sufficiently studied. Worker offspring of 18 Eastern Honey Bee (Apis cerana Fabr.) queens from three populations across Thailand were genotyped at five microsatellite markers to test for population differences of mating behavior across three different ecosystems. The number of matings decreased from a northern, more seasonal environment to a southern tropical population and was lowest in a tropical island population. Our study confirms earlier findings that social insect mating behavior shows biogeographic variation and highlights that data from several populations are needed for reliable species-specific estimates of the number of matings. Detailed studies of populations that show significant differentiation in the number of matings may be able to discriminate effectively among the different hypotheses that have been proposed to explain the evolution of polyandry in honey bees and other advanced social insects
Noise suppression by noise
We have analyzed the interplay between an externally added noise and the
intrinsic noise of systems that relax fast towards a stationary state, and
found that increasing the intensity of the external noise can reduce the total
noise of the system. We have established a general criterion for the appearance
of this phenomenon and discussed two examples in detail.Comment: 4 pages, 4 figure
Dark Energy and Neutrino Mass Limits from Baryogenesis
In this brief report we consider couplings of the dark energy scalar, such as
Quintessence to the neutrinos and discuss its implications in studies on the
neutrino mass limits from Baryogenesis. During the evolution of the dark energy
scalar, the neutrino masses vary, consequently the bounds on the neutrino
masses we have here differ from those obtained before.Comment: 5 pages,3 figures. Version accepted for publication in Phys. Rev.
Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin-Huxley model
The influence of intrinsic channel noise on the spontaneous spiking activity
of poisoned excitable membrane patches is studied by use of a stochastic
generalization of the Hodgkin-Huxley model. Internal noise stemming from the
stochastic dynamics of individual ion channels is known to affect the
collective properties of the whole ion channel cluster. For example, there
exists an optimal size of the membrane patch for which the internal noise alone
causes a regular spontaneous generation of action potentials. In addition to
varying the size of ion channel clusters, living organisms may adapt the
densities of ion channels in order to optimally regulate the spontaneous
spiking activity. The influence of channel block on the excitability of a
membrane patch of certain size is twofold: First, a variation of ion channel
densities primarily yields a change of the conductance level. Second, a
down-regulation of working ion channels always increases the channel noise.
While the former effect dominates in the case of sodium channel block resulting
in a reduced spiking activity, the latter enhances the generation of
spontaneous action potentials in the case of a tailored potassium channel
blocking. Moreover, by blocking some portion of either potassium or sodium ion
channels, it is possible to either increase or to decrease the regularity of
the spike train.Comment: 10 pages, 3 figures, published 200
Investigating the History of Aubrites Using X-Ray Computed Tomography and Bulk Partition Coefficients
The aubrites are a unique group of differentiated meteorites that formed on parent bodies with oxygen fugacities (O2) from ~2 to ~6 log units below the iron-wustite buffer. At these highly reduced condi- tions, elements deviate from the geochemical behavior exhibited at terrestrial O2, and may form FeO-poor silicates, Si-bearing metals, and exotic sulfides. Geochemical examinations of aubrites, such as mineral major-element compositions, bulk-rock compositions, O isotopes, and crystallization ages, are crucial to understand their formation and evolution at extreme O2 conditions. In this study, we determine partitioning relationships of elements between bulk silicate, sulfide, and metal phases within aubrites, and compare the results to partition coefficients determined from petrologic experiments run under mercurian conditions. While previous studies have described the petrology and 2D modal abundances of aubrites, this work provides the first 3D view of aubritic mineralogies, which are com- pared to the available 2D data. Constraints of 3D modal abundances will increase the accuracy of computed bulk distribution coefficients; therefore, 3D scans of aubrite samples are imperative. We utilize X-ray computed tomogra- phy (XCT) to non-destructively analyze the distribution and abundances of mineral phases in aubrites and locate composite clasts of sulfide grains for future analysis
- …