755 research outputs found

    Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements

    Get PDF
    Number concentrations of total and non-volatile aerosol particles with size diameters >0.01 μm as well as particle size distributions (0.4–23 μm diameter) were measured in situ in the Arctic lower stratosphere (10–20.5 km altitude). The measurements were obtained during the campaigns European Polar Stratospheric Cloud and Lee Wave Experiment (EUPLEX) and Envisat-Arctic-Validation (EAV). The campaigns were based in Kiruna, Sweden, and took place from January to March 2003. Measurements were conducted onboard the Russian high-altitude research aircraft Geophysica using the low-pressure Condensation Nucleus Counter COPAS (COndensation PArticle Counter System) and a modified FSSP 300 (Forward Scattering Spectrometer Probe). Around 18–20 km altitude typical total particle number concentrations nt range at 10–20 cm−3 (ambient conditions). Correlations with the trace gases nitrous oxide (N2O) and trichlorofluoromethane (CFC-11) are discussed. Inside the polar vortex the total number of particles >0.01 μm increases with potential temperature while N2O is decreasing which indicates a source of particles in the above polar stratosphere or mesosphere. A separate channel of the COPAS instrument measures the fraction of aerosol particles non-volatile at 250°C. Inside the polar vortex a much higher fraction of particles contained non-volatile residues than outside the vortex (~67% inside vortex, ~24% outside vortex). This is most likely due to a strongly increased fraction of meteoric material in the particles which is transported downward from the mesosphere inside the polar vortex. The high fraction of non-volatile residual particles gives therefore experimental evidence for downward transport of mesospheric air inside the polar vortex. It is also shown that the fraction of non-volatile residual particles serves directly as a suitable experimental vortex tracer. Nanometer-sized meteoric smoke particles may also serve as nuclei for the condensation of gaseous sulfuric acid and water in the polar vortex and these additional particles may be responsible for the increase in the observed particle concentration at low N2O. The number concentrations of particles >0.4 μm measured with the FSSP decrease markedly inside the polar vortex with increasing potential temperature, also a consequence of subsidence of air from higher altitudes inside the vortex. Another focus of the analysis was put on the particle measurements in the lowermost stratosphere. For the total particle density relatively high number concentrations of several hundred particles per cm3 at altitudes below ~14 km were observed in several flights. To investigate the origin of these high number concentrations we conducted air mass trajectory calculations and compared the particle measurements with other trace gas observations. The high number concentrations of total particles in the lowermost stratosphere are probably caused by transport of originally tropospheric air from lower latitudes and are potentially influenced by recent particle nucleation

    Experimental study on the influence of dimethylamine on the detection of gas phase sulfuric acid using chemical ionization mass spectrometry (CIMS)

    Get PDF
    Based on quantum chemistry calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H_2SO_4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment was set up at the CLOUD aerosol chamber to test the quantitative detection of H_2SO_4 by CIMS by directly comparing the measured H_2SO_4 with and without DMA being present in the sample air. It was found that the H_2SO_4 cluster distribution changes but the CIMS detection efficiency is not strongly influenced

    In situ measurements of tropical cloud properties in the West African Monsoon: upper tropospheric ice clouds, Mesoscale Convective System outflow, and subvisual cirrus

    Get PDF
    In situ measurements of ice crystal size distributions in tropical upper troposphere/lower stratosphere (UT/LS) clouds were performed during the SCOUT-AMMA campaign over West Africa in August 2006. The cloud properties were measured with a Forward Scattering Spectrometer Probe (FSSP-100) and a Cloud Imaging Probe (CIP) operated aboard the Russian high altitude research aircraft M-55 Geophysica with the mission base in Ouagadougou, Burkina Faso. A total of 117 ice particle size distributions were obtained from the measurements in the vicinity of Mesoscale Convective Systems (MCS). Two to four modal lognormal size distributions were fitted to the average size distributions for different potential temperature bins. The measurements showed proportionately more large ice particles compared to former measurements above maritime regions. With the help of trace gas measurements of NO, NOy, CO2, CO, and O3 and satellite images, clouds in young and aged MCS outflow were identified. These events were observed at altitudes of 11.0 km to 14.2 km corresponding to potential temperature levels of 346 K to 356 K. In a young outflow from a developing MCS ice crystal number concentrations of up to (8.3 ± 1.6) cm−3 and rimed ice particles with maximum dimensions exceeding 1.5 mm were found. A maximum ice water content of 0.05 g m−3 was observed and an effective radius of about 90 μm. In contrast the aged outflow events were more diluted and showed a maximum number concentration of 0.03 cm−3, an ice water content of 2.3 × 10−4 g m−3, an effective radius of about 18 μm, while the largest particles had a maximum dimension of 61 μm. Close to the tropopause subvisual cirrus were encountered four times at altitudes of 15 km to 16.4 km. The mean ice particle number concentration of these encounters was 0.01 cm−3 with maximum particle sizes of 130 μm, and the mean ice water content was about 1.4 × 10−4 g m−3. All known in situ measurements of subvisual tropopause cirrus are compared and an exponential fit on the size distributions is established for modelling purposes. A comparison of aerosol to ice crystal number concentrations, in order to obtain an estimate on how many ice particles may result from activation of the present aerosol, yielded low ratios for the subvisual cirrus cases of roughly one cloud particle per 30 000 aerosol particles, while for the MCS outflow cases this resulted in a high ratio of one cloud particle per 300 aerosol particles

    Ternary H_2SO_4-H_2O-NH_3 Neutral and Charged Nucleation Rates for a Wide Range of Atmospheric Conditions

    Get PDF
    The formation of new particles for the ternary system involving sulfuric acid, water vapor and ammonia has been studied in detail. The nucleation rates were obtained from experiments at the CERN CLOUD chamber which allows the measurement of new particle formation under very well defined conditions. Some of its key features are the suppression of contaminants at the technological limit and a very precise control of a wide range of temperatures, trace gas concentrations and nucleation rates. The effect of ionizing radiation on the ternary nucleation rates was investigated by using the CERN proton synchrotron beam (beam conditions), natural galactic cosmic rays (gcr conditions) as well as the high voltage clearing field inside the chamber to suppress the effect of charges (neutral conditions). The dependence of the nucleation rate on ion concentration, sulfuric acid and ammonia concentration as well as temperature was studied extensively. This way, an unprecedented set of data was collected giving insight into the role of neutral and charged ternary NH_3 nucleation and the relative importance of the different parameters

    Results from the CERN pilot CLOUD experiment

    Get PDF
    During a 4-week run in October–November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cm -3 s -1, and growth rates between 2 and 37 nm h -1. The corresponding H2O concentrations were typically around 106 cm -3 or less. The experimentally-measured formation rates and htwosofour concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid alone is not able to explain the observed rapid growth rates, which suggests the presence of additional trace vapours in the aerosol chamber, whose identity is unknown. By analysing the charged fraction, a few of the aerosol bursts appear to have a contribution from ion-induced nucleation and ion-ion recombination to form neutral clusters. Some indications were also found for the accelerator beam timing and intensity to influence the aerosol particle formation rate at the highest experimental SO2 concentrations of 6 ppb, although none was found at lower concentrations. Overall, the exploratory measurements provide suggestive evidence for ion-induced nucleation or ion-ion recombination as sources of aerosol particles. However in order to quantify the conditions under which ion processes become significant, improvements are needed in controlling the experimental variables and in the reproducibility of the experiments. Finally, concerning technical aspects, the most important lessons for the CLOUD design include the stringent requirement of internal cleanliness of the aerosol chamber, as well as maintenance of extremely stable temperatures (variations below 0.1 °C

    Evaporation of sulfate aerosols at low relative humidity

    Get PDF
    Evaporation of sulfuric acid from particles can be important in the atmospheres of Earth and Venus. However, the equilibrium constant for the dissociation of H2SO4 to bisulfate ions, which is the one of the fundamental parameters controlling the evaporation of sulfur particles, is not well constrained. In this study we explore the volatility of sulfate particles at very low relative humidity. We measured the evaporation of sulfur particles versus temperature and relative humidity in the CLOUD chamber at CERN. We modelled the observed sulfur particle shrinkage with the ADCHAM model. Based on our model results, we conclude that the sulfur particle shrinkage is mainly governed by H2SO4 and potentially to some extent by SO3 evaporation. We found that the equilibrium constants for the dissociation of H2SO4 to HSO4-(KH2SO4) and the dehydration of H2SO4 to SO3 ((x) K-SO3) are K H2SO4 = 2-4 x 10(9) mol kg(-1) and (x) K SO3 >= 1.4 x 10(10) at 288.8 +/- 5 K.Peer reviewe
    corecore