21,506 research outputs found
Directional genetic differentiation and asymmetric migration
Understanding the population structure and patterns of gene flow within
species is of fundamental importance to the study of evolution. In the fields
of population and evolutionary genetics, measures of genetic differentiation
are commonly used to gather this information. One potential caveat is that
these measures assume gene flow to be symmetric. However, asymmetric gene flow
is common in nature, especially in systems driven by physical processes such as
wind or water currents. Since information about levels of asymmetric gene flow
among populations is essential for the correct interpretation of the
distribution of contemporary genetic diversity within species, this should not
be overlooked. To obtain information on asymmetric migration patterns from
genetic data, complex models based on maximum likelihood or Bayesian approaches
generally need to be employed, often at great computational cost. Here, a new
simpler and more efficient approach for understanding gene flow patterns is
presented. This approach allows the estimation of directional components of
genetic divergence between pairs of populations at low computational effort,
using any of the classical or modern measures of genetic differentiation. These
directional measures of genetic differentiation can further be used to
calculate directional relative migration and to detect asymmetries in gene flow
patterns. This can be done in a user-friendly web application called
divMigrate-online introduced in this paper. Using simulated data sets with
known gene flow regimes, we demonstrate that the method is capable of resolving
complex migration patterns under a range of study designs.Comment: 25 pages, 8 (+3) figures, 1 tabl
Regulatory interaction with the long-term insurance industry in pursuit of market stability and financial inclusion
This study explores how the financial regulator through interaction with the long-term insurance industry can give effect to greater market inclusion and financial stability. It follows a qualitative approach and we interview both industry representatives and the regulator. The results show that there is a possible tension between the regulatory objectives of market stability and financial inclusion and that an unbalanced focus on either objective could adversely affect the other. It suggests that the best way to ensure this balance is for industry, the regulator, and government to co-frame issues, rather than being obliged to rely on the regulator to draft regulation in isolation. The entry level (base of the pyramid) insurance market may require a different paradigm to âusualâ insurance constructs and this requires a more innovative approach from all stakeholders. The findings highlight strategic measures which may assist regulators giving effect to greater market inclusion without prejudicing the stability of the market
Headwaters are critical reservoirs of microbial diversity for fluvial networks
Streams and rivers form conspicuous networks on the Earth and are among nature's most effective integrators. Their dendritic structure reaches into the terrestrial landscape and accumulates water and sediment en route from abundant headwater streams to a single river mouth. The prevailing view over the last decades has been that biological diversity also accumulates downstream. Here, we show that this pattern does not hold for fluvial biofilms, which are the dominant mode of microbial life in streams and rivers and which fulfil critical ecosystem functions therein. Using 454 pyrosequencing on benthic biofilms from 114 streams, we found that microbial diversity decreased from headwaters downstream and especially at confluences. We suggest that the local environment and biotic interactions may modify the influence of metacommunity connectivity on local biofilm biodiversity throughout the network. In addition, there was a high degree of variability in species composition among headwater streams that could not be explained by geographical distance between catchments. This suggests that the dendritic nature of fluvial networks constrains the distributional patterns of microbial diversity similar to that of animals. Our observations highlight the contributions that headwaters make in the maintenance of microbial biodiversity in fluvial networks
Intraspecific variation in thermal acclimation and tolerance between populations of the winter ant, Prenolepis imparis.
Thermal phenotypic plasticity, otherwise known as acclimation, plays an essential role in how organisms respond to short-term temperature changes. Plasticity buffers the impact of harmful temperature changes; therefore, understanding variation in plasticity in natural populations is crucial for understanding how species will respond to the changing climate. However, very few studies have examined patterns of phenotypic plasticity among populations, especially among ant populations. Considering that this intraspecies variation can provide insight into adaptive variation in populations, the goal of this study was to quantify the short-term acclimation ability and thermal tolerance of several populations of the winter ant, Prenolepis imparis. We tested for correlations between thermal plasticity and thermal tolerance, elevation, and body size. We characterized the thermal environment both above and below ground for several populations distributed across different elevations within California, USA. In addition, we measured the short-term acclimation ability and thermal tolerance of those populations. To measure thermal tolerance, we used chill-coma recovery time (CCRT) and knockdown time as indicators of cold and heat tolerance, respectively. Short-term phenotypic plasticity was assessed by calculating acclimation capacity using CCRT and knockdown time after exposure to both high and low temperatures. We found that several populations displayed different chill-coma recovery times and a few displayed different heat knockdown times, and that the acclimation capacities of cold and heat tolerance differed among most populations. The high-elevation populations displayed increased tolerance to the cold (faster CCRT) and greater plasticity. For high-temperature tolerance, we found heat tolerance was not associated with altitude; instead, greater tolerance to the heat was correlated with increased plasticity at higher temperatures. These current findings provide insight into thermal adaptation and factors that contribute to phenotypic diversity by revealing physiological variance among populations
Graphics for uncertainty
Graphical methods such as colour shading and animation, which are widely available, can be very effective in communicating uncertainty. In particular, the idea of a âdensity stripâ provides a conceptually simple representation of a distribution and this is explored in a variety of settings, including a comparison of means, regression and models for contingency tables. Animation is also a very useful device for exploring uncertainty and this is explored particularly in the context of flexible models, expressed in curves and surfaces whose structure is of particular interest. Animation can further provide a helpful mechanism for exploring data in several dimensions. This is explored in the simple but very important setting of spatiotemporal data
Winter Conditions Influence Biological Responses of Migrating Hummingbirds
Conserving biological diversity given ongoing environmental changes requires the knowledge of how organisms respond biologically to these changes; however, we rarely have this information. This data deficiency can be addressed with coordinated monitoring programs that provide field data across temporal and spatial scales and with process-based models, which provide a method for predicting how species, in particular migrating species that face different conditions across their range, will respond to climate change. We evaluate whether environmental conditions in the wintering grounds of broad-tailed hummingbirds influence physiological and behavioral attributes of their migration. To quantify winter ground conditions, we used operative temperature as a proxy for physiological constraint, and precipitation and the normalized difference vegetation index (NDVI) as surrogates of resource availability. We measured four biological response variables: molt stage, timing of arrival at stopover sites, body mass, and fat. Consistent with our predictions, we found that birds migrating north were in earlier stages of molt and arrived at stopover sites later when NDVI was low. These results indicate that wintering conditions impact the timing and condition of birds as they migrate north. In addition, our results suggest that biologically informed environmental surrogates provide a valuable tool for predicting how climate variability across years influences the animal populations
Single nucleotide polymorphism-based dispersal estimates using noninvasive sampling
Quantifying dispersal within wild populations is an important but challenging task. Here we present a method to estimate contemporary, individual-based dispersal distance from noninvasively collected samples using a specialized panel of 96 SNPs (single nucleotide polymorphisms). One main issue in conducting dispersal studies is the requirement for a high sampling resolution at a geographic scale appropriate for capturing the majority of dispersal events. In this study, fecal samples of brown bear (Ursus arctos) were collected by volunteer citizens, resulting in a high sampling resolution spanning over 45,000km(2) in Gavleborg and Dalarna counties in Sweden. SNP genotypes were obtained for unique individuals sampled (n=433) and subsequently used to reconstruct pedigrees. A Mantel test for isolation by distance suggests that the sampling scale was appropriate for females but not for males, which are known to disperse long distances. Euclidean distance was estimated between mother and offspring pairs identified through the reconstructed pedigrees. The mean dispersal distance was 12.9km (SE 3.2) and 33.8km (SE 6.8) for females and males, respectively. These results were significantly different (Wilcoxon's rank-sum test: P-value=0.02) and are in agreement with the previously identified pattern of male-biased dispersal. Our results illustrate the potential of using a combination of noninvasively collected samples at high resolution and specialized SNPs for pedigree-based dispersal models
Quantifying the efficiency and biases of forest Saccharomyces sampling strategies
Saccharomyces yeasts are emerging as model organisms for ecology and evolution, and researchers need environmental Saccharomyces isolates to test ecological and evolutionary hypotheses. However, methods for isolating Saccharomyces from nature have not been standardized and isolation methods may influence the genotypes and phenotypes of studied strains. We compared the effectiveness and potential biases of an established enrichment culturing method against a newly developed direct plating method for isolating forest floor Saccharomyces spp. In a European forest, enrichment culturing was both less successful at isolating S. paradoxus per sample collected and less labor intensive per isolated S. paradoxus colony than direct isolation. The two methods sampled similar S. paradoxus diversity: the number of unique genotypes sampled (i.e., genotypic diversity) per S. paradoxus isolate and average growth rates of S. paradoxus isolates did not differ between the two methods, and growth rate variances (i.e., phenotypic diversity) only differed in one of three tested environments. However, enrichment culturing did detect rare S. cerevisiae in the forest habitat, and also found two S. paradoxus isolates with outlier phenotypes. Our results validate the historically common method of using enrichment culturing to isolate representative collections of environmental Saccharomyces. We recommend that researchers choose a Saccharomyces sampling method based on resources available for sampling and isolate screening. Researchers interested in discovering new Saccharomyces phenotypes or rare Saccharomyces species from natural environments may also have more success using enrichment culturing. We include step-by-step sampling protocols in the supplemental materials
Intention of preserving forest remnants among landowners in the Atlantic Forest: The role of the ecological context via ecosystem services
Unravelling the psychological processes determining landowners' support towards forest conservation is crucial, particularly in rural areas of the tropics, where most forest remnants are within private lands. As humanânature connections are known to shape proâenvironmental behaviours, the intention of preserving forest remnants should ultimately be determined by the ecological context people live in. Here, we investigate the pathways through which the ecological context (forest cover), via direct contact with forests and ecosystem services and disservices, influence the psychological antecedents of conservation behaviour (beliefs, attitude and intention of preserving forest remnants). We conceptualized a model based on the Reasoned Action Approach, using the ecological context and these three forest experiences as background factors, and tested the model using Piecewise Structural Equation Modelling. Data were collected through an interviewâbased protocol applied to 106 landowners across 13 landscapes varying in forest cover in a consolidated rural region in the Brazilian Atlantic Forest. Our results indicate that: (a) ecosystem services are more important than disservices for shaping intention of preserving forests, particularly nonâprovisioning services; (b) contact with forest has an indirect effect on intention, by positively influencing the frequency of receiving ecosystem services; (c) people living in more forested ecological contexts have more contact with forests, receive ecosystem services more frequently and, ultimately, have stronger intention of preserving forests. Hence, our study suggests a dangerous positive feedback loop between deforestation, the extinction of forest experiences and impairment of humanânature connections. Local demands across the full range of ecosystem services, the balance between services and disservices and the ecological context people live in should be considered when developing conservation initiatives in tropical rural areas
- âŠ