6,277 research outputs found

    Electron heating mode transitions in dual frequency capacitive discharges

    Get PDF
    The authors consider electron heating in the sheath regions of capacitive discharges excited by a combination of two frequencies, one much higher than the other. There is a common supposition that in such discharges the higher frequency is the dominant source of electron heating. In this letter, the authors discuss closed analytic expressions quantifying the Ohmic and collisionless electron heating in a dual frequency discharge. In both cases, the authors show that the lower frequency parameters strongly influence the heating effect. Moreover, this influence is parametrically different, so that the dominant heating mechanism may be changed by varying the low frequency current density

    Collisionless heating in capacitive discharges enhanced by dual-frequency excitation

    Get PDF
    We discuss collisionless electron heating in capacitive discharges excited by a combination of two disparate frequencies. By developing an analytical model, we find, contrary to expectation, that the net heating in this case is much larger than the sum of the effects occurring when the two frequencies act separately. This prediction is substantiated by kinetic simulations, which are also in excellent general quantitative agreement with the model for discharge parameters that are typical of recent experiments

    The Baum-Connes Conjecture via Localisation of Categories

    Get PDF
    We redefine the Baum-Connes assembly map using simplicial approximation in the equivariant Kasparov category. This new interpretation is ideal for studying functorial properties and gives analogues of the assembly maps for all equivariant homology theories, not just for the K-theory of the crossed product. We extend many of the known techniques for proving the Baum-Connes conjecture to this more general setting

    A model for tailored-waveform radiofrequency sheaths

    Get PDF
    The sheath physics of radiofrequency plasmas excited by a sinusoidal waveform is reasonably well understood, but the existing models are complicated and are not easily extended to the more complex waveforms recently introduced in applications. Turner and Chabert (2014 Appl. Phys. Lett. 104 164102) proposed a model for collisionless sheaths that can easily be solved for arbitrary waveforms. In this paper we extend this model to the case of collisional sheaths in the intermediate pressure regime. Analytical expressions are derived for the electric field, the electric potential and the density profiles in the sheath region. The collisionless and collisional models are compared for a pulsed-voltage waveform

    Electron heating mechanisms in dual frequency capacitive discharges

    Get PDF
    We discuss electron heating mechanisms in the sheath regions of dual-frequency capacitive discharges, with the twin aims of identifying the dominant mechanisms and supplying closed-form expressions from which the heating power can be estimated. We show that the heating effect produced by either Ohmic or collisionless heating is much larger when the discharge is excited by a superposition of currents at two frequencies than if either current had acted alone. This coupling effect occurs because the lower frequency current, while not directly heating the electrons to any great extent, strongly affects the spatial structure of the discharge in the sheath regions

    Model peptide studies of Ag+ binding sites from the silver resistance protein SilE

    Get PDF
    Using model peptides, each of the nine MX2H or HXnM (n = 1, 2) motifs of the silver resistance protein SilE has been shown to coordinate to one Ag+ ion by its histidine and methionine residues with Kd in the μM range. This suggests an Ag+ buffering role for SilE in the case of high Ag+ overload

    Diminuição da Expressão Antigénica A Associada a Leucemia

    Get PDF
    corecore