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Abstract

We discuss collisionless electron heating in capacitive discharges excited by a combination of two

disparate frequencies. By developing an analytical model, we find, contrary to expectation, that

the collisionless heating effect is much larger in the presence of two frequencies than when either

frequency acts alone. This prediction is substantiated by kinetic simulations, which are also in

excellent general quantitative agreement with the model for discharge parameters that are typical

of recent experiments.
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Interaction with an electrode is a central problem in the physics of confined plasmas,

whether the focus be fundamentals or applications. An important instance of this prob-

lem occurs when the electrode carries an oscillating voltage. The sheath surrounding the

electrode then becomes an oscillatory structure of great intrinsic interest and practical sig-

nificance. Especially remarkable physical effects occur when particle collisions within the

sheath are rare, because substantial amounts of power may nevertheless be dissipated in the

vicinity of the electrode, and discharges may be sustained predominantly by this so-called

collisionless heating process [1, 2]. Recently, new experimental contexts have appeared,

with the rise of interest in dual-frequency capacitive discharges [3–5], and the related need

to widen the range of frequencies that are used, including much larger frequencies that have

been usual. In this Letter, we investigate the collisionless heating mechanisms that act in

such cases. For typical parameters, we find a surprising result, that the heating produced

by the superposition of two currents with different frequencies can be much larger than the

effect of either acting alone, contrary to recent predictions of an additive effect [5]. We also

show that for typical experimental conditions, the theory can be reduced to a closed formula,

suitable for use in simple analytic models.

Despite the evident importance of collisionless heating effects in capacitive discharge

experiments [1] and simulations [6, 7], a consistent theory, or even a clear physical model

[6–11], has proved elusive. Both Godyak [8] and Lieberman [9] emphasized physical models

in which electrons are heated by collision with a moving sheath edge, localizing the heating

mechanism at a point. If one takes these models seriously, one expects the heating effect to

be localized in a transition region between the quasi-neutral plasma and the positive space

charge sheath. However, simulations demonstrate that such a transition region plays little

or no essential role [7]. Moreover, it can be shown that the models discussed by Godyak

and Lieberman fail to conserve current through the sheath region, and that when these

models are modified such that current conservation is enforced, the collisionless heating

effect exactly vanishes. Gozadinos et al [6] both articulated and addressed these arguments,

by developing an approach where the electron fluid in the sheath region is described by

moment equations with a simple kinetic closure. This model exactly conserves current,

explicitly takes into account the spatial structure of the sheath, contains no adjustable

parameters, and is in good agreement with kinetic simulation results. Kaganovich [11] has

since developed a kinetic treatment in which current is conserved. This however represents
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the ion density in the sheath as a step function, and introduces the main collisionless heating

effect via an ansätz. Moreover, this model is in less good agreement with the simulation

results given by Gozadinos et al. Therefore, we regard the moment model discussed in [6]

as the most satisfactory of the available theories, and it is the point of embarkation for the

present discussion.

We consider a collisionless plasma consisting of electrons and one species of positive

ion. An electrode in contact with the plasma carries a net current density given by J(t) =

−J̃l sin ωlt−J̃h sin ωht, where J̃l,h and ωl,h are distince current density amplitudes and angular

frequencies. The structure of the boundary region that forms adjacent to the electrode is

discussed elsewhere [4, 12]. Briefly, it is useful to identify an electron sheath edge, defined

as a point separating the positive space charge sheath from the quasi-neutral plasma. The

electron sheath edge traces a complex path as the phase of the current advances [4], but

this motion is bounded, and we define as the ion sheath edge the point where the electron

sheath edge is most distant from the electrode. The ion density is then uniform on the

plasma side of the ion sheath edge, and rather rapidly diminishing on the electrode side, as

the ions are accelerated towards the electrode. We consider that the collisionless heating

effect occurs in the electron fluid, in the region between the electron and ion sheath edges.

This region is described by the Vlasov-Poisson system of equations. Using moments of the

Vlasov equation, we can show that the electron fluid is described by:

∂

∂t

(
1

2
nT

)
+

∂

∂x

(
3

2
nuT + Q

)
− u

∂

∂x
(nT ) = 0. (1)

where n(x, t) is the density, T (x, t) is the effective temperature expressed in joules, u(x, t) is

the drift velocity and Q(x, t) is the heat flux. We note that T characterizes the non-drifting

part of the electron velocity distribution, and it is not implied that this is Maxwellian. We

assume that the positive ion density ni is defined by a suitable sheath model [4, 12], and

that in this quasi-neutral region n ' ni, so n is given. From the specification of the current

density, it follows that∫ s(t)

0
n dx = n0

{
ũl

ωl

(1− cos ωlt) +
ũh

ωh

(1− cos ωht)
}

(2)

−(un)0 = n0 (ũl sin ωlt + ũh sin ωht) . (3)

where s(t) is the position of the electron sheath edge, with its origin at the ion sheath edge,

ũl = J̃l/en0, etc, and the subscript 0 refers to quantities defined at the ion sheath edge.
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We now assume that T is independent of x within the sheath, and with this assumption we

can integrate eq. 1 between the ion sheath edge and the electron sheath edge to obtain the

ordinary differential equation

1

2
n0

dT

dt

{
ũl

ωl

(1− cos ωlt)−
ũh

ωh

(1− cos ωht)
}

−Tn0 ln
(

ns

n0

)
(ũl sin ωlt + ũh sin ωht) − 2Qb

(
T

Tb

) (
1− T

Tb

)
= 0, (4)

where Qb = 1
4
n0v̄bTb, v̄b =

√
8T/πme, the subscript s denotes quantities defined at the

electron sheath edge and Tb is the temperature of the electron flux incident from the bulk

plasma. This equation assumes that no electrons are absorbed by the electrode. Eq. 4

apparently contains six distinct physical parameters, namely Tb, n0, J̃l, ωl, J̃h and ωh.

These, however, can be reduced to four dimensionless parameters, δl ≡ ũl/v̄b, γl ≡ ωl/ωp,

δh ≡ ũh/v̄b and γh ≡ ωh/ωp, where ω2
p ≡ e2n0/ε0me. We define ns(t) using the sheath model

of [4], which has three control parameters. These are α ≡ ωh/ωl = γh/γl, β ≡ J̃h/J̃l = δh/δl

and Hl ≡ 8δ2
l /π

2γ2
l . With the normalizations τ ≡ T/Tb and θ ≡ ωlt, eq. 4 can be written:

δl

[
(1− cos θ)

dτ

dθ
− 2τ ln η sin θ

]

+δh

[
1

α
(1− cos αθ)

dτ

dθ
− 2τ ln η sin αθ

]
+τ (τ − 1) = 0, (5)

where η(θ) ≡ ns/n0.

Eq. 5 is solved by an expression in the form:

τ = τ (0) + δlτ
(1)
l + δhτ

(1)
h + δ2

l τ
(2)
l + δ2

hτ
(2)
h + δlδhτ

(2)
hl + O(δ3

l,h), (6)

where the τ (n) are arbitrary functions that are to be determined by inserting the power

series, eq. 6, into the differential equation, eq. 5. Since δl,h � 1, the series may be truncated

if α is not too large, and in this way, we find

τ (0) = 1 (7)

τ
(1)
l = 2 ln η sin θ (8)

τ
(1)
h = 2 ln η sin αθ (9)

τ
(2)
l = − (1− cos θ)

dτ
(1)
l

dθ
(10)

τ
(2)
h = − 1

α
(1− cos αθ)

dτ
(1)
h

dθ
(11)

τ
(2)
lh = − (1− cos θ)

dτ
(1)
h

dθ
− 1

α
(1− cos αθ)

dτ
(1)
l

dθ
. (12)
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We can now express the sheath heating power per unit area as:

〈Slh〉 = −〈Q0〉 = 2Qbτ(τ − 1) (13)

= 2Qb

〈
δ2
l

(
τ

(2)
l + τ

(1)
l

2
)

+ δ2
h

(
τ

(2)
h + τ

(1)
h

2
)〉

(14)

= 2Qb

[
δ2
l F0(α, β, Hl) + δ2

hF1(α, β, Hl)
]

(15)

as 〈τ (1)
l 〉 = 〈τ (1)

h 〉 = 〈τ (2)
lh 〉 = 0, and where F0 and F1 are functions implied by the indicated

time averaging. Scrutiny of these functions shows that their values depend only weakly on

α and β, so that to a useful approximation F0 ≈ 36Hl/(55 + Hl), as in [6], and F1 ≈ 1.1F0.

We will now discuss the predictions of this model with reference to particle-in-cell sim-

ulations [13]. Our procedure is described in detail in [14], therefore we give only brief

particulars. We simulate only the sheath and its immediate vicinity, by injecting electrons

and ions from one boundary with velocity distributions chosen to model an adjacent semi-

infinite plasma with a given electron temperature and density. Electrons are injected with

distribution corresponding to a Maxwellian bulk plasma, while ions are initially injected

with a drift velocity at the Bohm speed and a thermal component at 350 K. We allow this

simulation to proceed in time until a harmonic steady state is reached with respect to both

driving frequencies. Then, we freeze the ions, so that electrons cease to be collected by

the electrode. In this way, we reproduce in the simulation the situation envisaged in the

model discussed above, and we separate the collisionless heating effect from extraneous phe-

nomena that would otherwise complicate our interpretation of the simulation results. The

physical parameters used in these calculations are n0 = 5 × 1015 m−3 and Tb = 30000 K.

Except where otherwise implied, ωl = 2π × 2 MHz, ωh = 2π × 26 MHz, J̃l = 10 A m−2 and

J̃h = 36 A m−2 Indications of the general character of the heating effect, and the consis-

tency of the simulations with the model, are shown in figs. 1 and 2. Fig 1 is an example of

the heating power per unit area computed from the simulation. This figure shows that the

heating power reaches a positive maximum during the expanding phase of the low-frequency

sheath, where π < θ < 2π , a feature which is also seen in the analytical model. In fig. 2,

we compare the sheath electron temperature from the simulation with the analytical model,

and we find generally good agreement. A more detailed parametric investigation is shown

in fig. 3, which shows excellent agreement between the simulations and the model.

Our theory entails a surprising prediction: Namely, that the heating power may be greatly
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enhanced when two frequencies act together Specifically, using the expressions above,

〈Slh〉
〈Sl〉+ 〈Sh〉

≈ 1 + 1.1β2

1 + β4/α2
. (16)

When Hl,h are not too large so I0 ∼ 36Hl/55, the maximum enhancement is approximately

(1 + α)/2, which occurs when β ≈
√

α. These parameters are within the typical range of

current experiments. In fig. 4, we compare simulations showing the heating effect produced

by each frequency separately with their combined effect, demonstrating that the predicted

enhancement does exist. In the case shown, which is close to the predicted maximum with

β/
√

α ∼ 1, the enhancement factor is approximately 5, compared to the predicted 7. The

discrepancy is mostly because Hh is significantly less than 1, and the single frequency theory

is not highly accurate in that case. As fig. 4 suggests, the mechanism of the enhancement is

the modification of the sheath structure that is produced by applying the lower frequency

current. Evidently, the sheath volume and the density gradients within it are increased

appreciably in the presence of the lower frequency current. In the present theory, the average

heating power is exactly zero on the plasma side of the ion sheath edge, because both n and

T are assumed to be uniform in that region. In simulation, and presumably in experiments,

there is a region of negative heating in the bulk plasma adjacent to the sheath, which is

clearly visible in fig. 4. This effect has been discussed elsewhere [7, 10, 11]. In fig. 5 we

compare the theory discussed above with simulations, for the case where Jh is held constant

and Jl is varied. There is good agreement, except in the limit Jl → 0, where our theory

cannot be applied—because the sheath model of [4] is not valid. However, by an ansätz

we can construct an expression that gives a practically useful result for a wide range of

parameters: We replace Hl in eq. 15 with an effective value Heff =
√

H2
l + H2

h. As shown in

fig. 5, this gives a result in good agreement with simulation, even when β/α � 1.

In summary, we have developed an analytical model for collisionless electron heating in

a dual frequency discharge that quantitatively predicts the main features of the heating

effect as it is seen in kinetic simulations and in the only relevant experiments yet available.

The model predicts that the collisionless heating effect is greatly enhanced in the presence

of two frequencies acting together, because both the affected volume of plasma and the

dynamic range of density are increased by applying the low frequency. This is likely to

be an effect of considerable practical importance. The model can also be reduced to a

convenient analytical formula, eq. 15, that reproduces the area integrated heating power
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with excellent accuracy for typical values of α and β, and provides a reasonable estimate

for more extreme parameters. The present theory begins to fail when α � 1, when it is in

probable that electromagnetic effects should be considered [15, 16], and that one no longer

has anything resembling a traditional capacitive discharge. Nothing is yet known of the

electron heating processes that might prevail under such conditions.
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FIG. 1: Collisionless heating power as a function of space and time, calculated by the particle

simulation, with J̃l = 10 A m−2, ωl = 2π × 2 MHz, J̃h = 20 A m−2 and ωl = 2π × 26 MHz, and

the plasma parameters discussed in the text. The ion sheath edge is at x = 0 and the electrode is

at x = smax.
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FIG. 2: Temperature of electrons in the sheath computed from the analytic theory of the text

(solid line) and from the particle-in-cell simulation (dashed line), for the conditions noted in fig. 1.
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FIG. 3: Normalized collisionless heating power as a function of β ≡ J̃h/J̃l, with J̃h as the parameter

varied (so that Hl is constant) and with α = ωh/ωl = 13.
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FIG. 4: Time averaged electron heating power resolved in space for three cases corresponding to

the two frequencies acting separately and both acting together. Note that the ion sheath edge in

each case is approximately located at the transition to negative power absorption, and that the

sheath width is appreciably influenced by the application of the high frequency [4], relative to the

low frequency acting alone. The parameter values used are J̃l = 10 A m−2, ωl = 2π × 2 MHz,

J̃h = 36 A m−2 and ωl = 2π × 26 MHz.
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FIG. 5: Time averaged electron heating power as a function of 1/β ≡ Jl/Jh, where the parameter

varied is the low frequency current density Jl. Other parameters held constant are the high

frequency current density Jh = 36 A m−2, and the two frequencies ωl = 2π × 2 MHz and ωh =

2π × 26 MHz. The points are simulation data. The short dashed line is the model of eq. 15, the

long dashed line the model generalized using the ansätze of the text.
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