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1. Introduction

Great interest is presently directed towards capacitive discharges excited by a

superposition of currents at two or more frequencies. This interest is motivated by

a desire to control the plasma parameters with more freedom than is possible when

only a single frequency is employed. In a typical dual-frequency discharge, the two

frequencies are disparate, with a ratio of at least ten. Moreover, the current density at

the higher frequency is larger than that at the lower frequency. As the impedance

is predominantly capacitive, and therefore decreasing with frequency, one typically

finds that the voltage associated with the lower frequency is larger than the voltage

associated with the higher frequency. The advantage of this configuration is that the

plasma density, and hence the ion flux at the plasma boundary, depends primarily

on the current density, and this is controlled by the higher frequency, while the ion

energy at the boundary depends mainly on the voltage, and this is controlled by the

lower frequency. Hence one can hope to exert separate control over the ion flux and

energy by appropriately manipulating the higher and lower frequency current densities.

Since the ion flux and energy are crucial parameters in many applications, this is an

important advantage. Of course, in practice one does not achieve independent control

of these two parameters. Various physical mechanisms produce coupling between the

two frequencies, and these effects have been explored in general terms in a number of

recent papers, e.g. [1, 2, 3, 4, 5, 6]. The purpose of the present paper is to discuss the

electron heating mechanisms that operate in dual-frequency discharges—in particular,

to elucidate their nature and significance, and as far as possible supply convenient

formulae that may be used as elements in a comprehensive theoretical understanding of

these discharges. Recent work on collisionless heating by capacitive sheaths has pursued

different theoretical paths and adopted different procedures for comparing theory and

simulations [7, 8, 9, 10, 11]. However, the upshot is similar scaling laws and absolute

differences of approximately a factor of two. Our present purpose is not to investigate the

reasons for these relatively minor divergences, which are of interest mainly to specialists,

but to discuss scaling laws and the relative importance of collisionless and Ohmic heating

in dual frequency discharges. The present paper, therefore, elaborates on the argument

of [9] and supplies a somewhat different view of the problem than that of [10].

For the purpose of our discussion, we assume that the discharge is divisible into

two kinds of region: namely, bulk plasma—where quasi-neutrality always holds and

the plasma density is time-independent—and sheaths,where the electron density at

least may be strongly varying in time, and where consequently gross departures from

quasi-neutrality may occur. We further assume that electron heating in bulk regions

is predominantly Ohmic in character, and as the problem of calculating the amount of

Ohmic heating in a region of stationary plasma parameters is a simple one [12], we will

not devote space to that topic. The focus of this paper is, therefore, to investigate the

electron heating that occurs in sheath regions, where the electron density varies strongly

in time. Electron heating in this case is some mixture of Ohmic heating and collisionless
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(also called stochastic) heating. We will show that for both of these mechanisms, the

magnitude of the heating effect is strongly influenced not only by the higher frequency

current density, but also by the lower frequency current density. However, the means by

which this influence is exerted is different for the two frequencies. The higher frequency

acts in the usual way, by producing an oscillatory motion of the electrons that is damped

in some way to produce heating, but the lower frequency affects the heating indirectly

by changing the structure of the sheath. In the presence of the lower frequency, the

sheath is wider, and the gradient of plasma density is steeper. As we will show, this

greatly enhances both Ohmic and collisionless heating.

In the discussion that follows, we assume that the spatial and temporal structure of

the sheath region is adequately described by the analytical model of [13, 14]. That model

has limitations, most notably that it requires the higher frequency voltage to be small

compared to the lower frequency voltage, and this prevents us from directly calculating

the heating effects in certain interesting cases, as we show below. However, this model

has the important advantage that it is strictly analytical, and supplies tractable formulae

for the discharge parameters of primary concern, which is not altogether true of the other

models that we might have chosen [15, 16]. We adopt from these models a simplified

representation of the spatial structure of the sheath, in which the transition between

the quasi-neutral plasma and the space-charge sheath is modelled as a step-function

in the electron density. Since the ion density is assumed to be time independent, the

sheath dynamics are captured by specifying the position of this electron density step as

a function of time. In the discussions that follow, we denote the position of this electron

sheath edge by x = s(t), and we adopt the convention that the ion sheath edge, where

the ions reach the Bohm velocity, is at x = 0, so that the electrode is at x = smax. In

a dual-frequency discharge, the trajectory of the electron sheath edge is complex, but

bounded in the range 0 ≤ s(t) ≤ smax. We assume that the current passing through the

sheath is the superposition of two frequencies, so that

J(t) = −J̃l sin ωlt− J̃h sin ωht, (1)

where J̃l,h and ωl,h are the current densities and angular frequencies of the two

components. (The surprising sign convention is chosen for consistency with previous

works [17, 13].) Robiche et al [13] have shown that under these assumptions, the

sheath dynamics are adequately described by three dimensionless parameters, the ratio

of current frequencies, α ≡ ωh/ωl, the ratio of current densities, β ≡ J̃h/J̃l, and

Hl ≡ J̃2
l /πTω2

l n0, subject to approximations that hold when β/α � 1. The parameter

H was introduced in the single frequency sheath model of Lieberman [17]. An important

point is that the equivalent of the Lieberman H parameter for this dual-frequency sheath

model does not depend on higher frequency parameters, ωh and J̃h, which shows that the

lower-frequency essentially controls the spatial structure of the sheath. As we will see,

this is a crucial point with profound implications for the interaction of the frequencies

in a dual-frequency discharge.

In what follows, we first discuss separately the two heating mechanisms that we
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consider, and we develop detailed theories of each. We show that these theories can

be reduced to convenient closed expressions that should be useful for analytical model

development, and in other contexts, such as analysis of experiments. In a final section,

we discuss the relative importance of collisionless and Ohmic heating. We show that,

while both mechanisms are strongly influenced by nonlinear interaction between the

lower and higher frequencies, the affect on Ohmic heating is more marked, with the result

that a heating mode transition can be induced by manipulating the current densities.

In particular, a transition from a state where collisionless heating is dominant to one

where Ohmic heating is dominant can take place when the current density as the lower

frequency is increased.

2. Collisionless heating

We consider a plasma consisting of electrons and one species of positive ion. Both

electrons and ions are assumed collisionless. An electrode is in contact with the plasma,

and this electrode carries a net current density given by eq. 1. We assume that the

collisionless heating effect occurs in the electron fluid, in the region between the electron

and ion sheath edges, as in [7]. This region is described by the Vlasov-Poisson system

of equations, with one real space dimension and one velocity space dimension. Using

moments of the Vlasov equation, we can show that the electron fluid is described by:

∂

∂t

(
1

2
nT
)

+
∂

∂x

(
3

2
nuT + Q

)
− u

∂

∂x
(nT ) = 0. (2)

where n is the density, T is the temperature expressed in joules, u is the drift velocity

and Q is the heat flux. We note that T characterizes the non-drifting part of the electron

velocity distribution, and it is not implied or entailed that this is Maxwellian. If the

non-drifting portion of the electron velocity distribution function were Maxwellian, the

heat flux would vanish, and this would be inconsistent with our theory. So it is actually

required that the non-drifting portion of the electron velocity distribution function is

not Maxwellian.

In accordance with the discussion above, we assume that the positive ion density

ni is given by a suitable sheath model [13, 16], and that in this quasi-neutral region

n ' ni, so n is given. From the specification of the current density, eq. 1, it follows that∫ s(t)

0
n dx = n0

{
ũl

ωl

(1− cos ωlt) +
ũh

ωh

(1− cos ωht)
}

(3)

−u0n0 = n0 (ũl sin ωlt + ũh sin ωht) , (4)

where ũl = J̃l/en0, etc, and the subscript 0 refers to quantities defined at the ion sheath

edge. We assume that T is independent of x within the sheath. This is reasonable

a priori, because the wavelength of thermal disturbances in the electron fluid is large

compared to the sheath length, and is also reasonable with reference to the kinetic

simulation results discussed below. If T can be assumed spatially constant, we can

integrate eq. 2 between the ion sheath edge and the electron sheath edge to obtain the
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ordinary differential equation

1

2
n0

dT

dt

{
ũl

ωl

(1− cos ωlt) +
ũh

ωh

(1− cos ωht)
}

−Tn0 ln
(

ns

n0

)
(ũl sin ωlt + ũh sin ωht) − 2Qb

(
T

Tb

)(
1− T

Tb

)
= 0,(5)

where Qb = 1
4
n0v̄bTb, v̄b =

√
8T/πme, the subscript s denotes quantities defined at the

electron sheath edge and Tb is the temperature of the electron flux incident from the bulk

plasma. This equation assumes that no electrons are absorbed by the electrode. Eq. 5

apparently contains six autonomous physical parameters, namely Tb, n0, J̃l, ωl, J̃h and

ωh. These, however, can be reduced to the four dimensionless parameters, δl ≡ ũl/v̄b,

γl ≡ ωl/ωp, δh ≡ ũh/v̄b and γh ≡ ωh/ωp, where ω2
p ≡ e2n0/ε0me. We define ns(t) using

the sheath model of [13], which has the three control parameters discussed above, which

can be written as α = γh/γl, β = δh/δl and Hl ≡ 8δ2
l /π

2γ2
l . With the normalizations

τ ≡ T/Tb and θ ≡ ωlt, eq. 5 can be written:

δl

[
(1− cos θ)

dτ

dθ
− 2τ ln η sin θ

]

+δh

[
1

α
(1− cos αθ)

dτ

dθ
− 2τ ln η sin αθ

]
+ τ (τ − 1) = 0, (6)

where η ≡ ns/n0.

Eq. 6 is solved by an expression in the form:

τ = τ (0) + δlτ
(1)
l + δhτ

(1)
h + δ2

l τ
(2)
l + δ2

hτ
(2)
h + δlδhτ

(2)
hl + O(δ3

l,h), (7)

where the τ (n) are arbitrary functions that are to be determined by inserting the power

series, eq. 7, into the differential equation, eq. 6. Since δl,h � 1, the series may be

truncated if α is not too large, and in this way, we find

τ (0) = 1 (8)

τ
(1)
l = 2 ln η sin θ (9)

τ
(1)
h = 2 ln η sin αθ (10)

τ
(2)
l = − (1− cos θ)

dτ
(1)
l

dθ
(11)

τ
(2)
h = − 1

α
(1− cos αθ)

dτ
(1)
h

dθ
(12)

τ
(2)
lh = − (1− cos θ)

dτ
(1)
h

dθ
− 1

α
(1− cos αθ)

dτ
(1)
l

dθ
. (13)

We can now express the sheath heating power per unit area as:

〈Slh〉 = − 〈Q0〉 = 2Qbτ(τ − 1) (14)

= 2Qb

〈
δ2
l

(
τ

(2)
l + τ

(1)
l

2
)

+ δ2
h

(
τ

(2)
h + τ

(1)
h

2
)〉

, (15)

as 〈τ (1)
l 〉 = 〈τ (1)

h 〉 = 〈τ (2)
lh 〉 = 0. We note that the instantaneous heating power in eq. 14

is not identical with the integral of the product JE from x = 0 to x = s(t), because
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both the drift energy and the thermal energy of the electron fluid in this region vary

with time. However, the time average of this spatial integral of JE and the time average

given by eq. 14 are identical. Two integrals remain to be evaluated:

F0(Hl, α, β) =
1

2π

∫ 2π

0

(
τ

(2)
l + τ

(1)
l

2
)

dθ (16)

F1(Hl, α, β) =
1

2π

∫ 2π

0

(
τ

(2)
h + τ

(1)
h

2
)

dθ. (17)

These expressions cannot be evaluated analytically, not least because of the complex

expressions that are introduced from the sheath model into the definitions of τ
(1)
l , etc.

However, we can find convenient approximate results that will hold in most cases of

practical interest. We note first that the integrand in I0 depends on the parameters

Hl, α and β only through the sheath model, that is to say through the definition of

ln η ≡ ns(H, α, β)/n0. The parameters α and β introduce local oscillatory behaviour

that is not important to the period average, such that it is a good approximation to set

β = 0 in the integrand of I0. (This is equivalent to approximating the dual frequency

sheath model of [13] with the single frequency model of [17].) With this simplification,

I0 is a function of Hl only, and is identical to the integral discussed in [7], which is there

asserted to be well approximated by:

F0(Hl, α, β) ≈ A0(Hl) =
36Hl

55 + Hl

. (18)

We can approach F1 in a similar manner. In this case, the integrand depends explicitly

on α because the functions τ
(1)
h and τ

(2)
h depend on α, so this integral cannot be reduced

in exactly the same way as I0. However, I1 is similarly insensitive to the values of α

and β, and by reference to numerical evaluation of F1 using a quadrature method we

find that:

F1(Hl, α, β) ≈ A1(Hl) = 1.1
36Hl

55 + Hl

. (19)

In fig. 1, we compare the value of F1 computed by a quadrature with the approximation

indicated in eq. 19. This shows that the approximation is good for a wide range of

values of α, in particular. With these expressions for the values of the integrals, we can

write a compact expression for the net heating when both frequencies act together:

〈Slh〉 ≈ 2Qb

(
δ2
l + 1.1δ2

h

)
A1(Hl). (20)

We will now discuss the predictions of this model with reference to particle-in-cell

simulations [18]. Our procedure is described in detail in [19], therefore we give only

brief particulars. We simulate only the sheath and its immediate vicinity, by injecting

electrons and ions from one boundary with velocity distributions chosen to model an

adjacent semi-infinite plasma with a given electron temperature and density. Electrons

are injected with distribution corresponding to a Maxwellian bulk plasma, while ions

are initially injected with a drift velocity at the Bohm speed and a thermal component

at 350 K. We allow this simulation to proceed in time until a harmonic steady state

is reached with respect to both driving frequencies. Then, we freeze the ions, so that
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electrons ceases to be collected by the electrode. In this way, we reproduce in the

simulation the situation envisaged in the model discussed above, and we separate the

collisionless heating effect from extraneous phenomena that would otherwise complicate

our interpretation of the simulation results. The physical parameters used in these

calculations are n0 = 5× 1015 m−3 and Tb = 30000 K. Except where otherwise implied,

ωl = 2π × 2 MHz, ωh = 2π × 26 MHz, J̃l = 10 A m−2 and J̃h = 36 A m−2

Indications of the general character of the heating effect, and the consistency of

the simulations with the model, are shown in figs. 2 and 3. Fig 2 is an example of

the heating power per unit area computed from the simulation. This figure shows that

the heating power reaches a positive maximum during the expanding phase of the low-

frequency sheath, where π < θ < 2π , a feature which is also seen in the analytical

model. In fig. 3, we compare the sheath electron temperature from the simulation with

the analytical model, and we find generally good agreement. More detailed parametric

investigations are shown in figs. 4 and 5. Fig. 4 shows excellent agreement between

the simulations and the model for a moderate value of α. However, fig. 5 shows that

this is not sustained for much larger α. There are two reasons for this. One is that

there is a dependency on α that the analytic solution fails to capture when α is large,

and this is a failure of the power series solution, not the approximations made between

eqs. 15 and 20. The solution procedure is not as mathematically robust when applied

to this dual-frequency model as was the case in [7]. In that work, a necessary and

sufficient condition for the power series approximation to converge was that δ � 1, and

this is satisfied for any reasonable choice of the physical parameters. In the present

case, we must also have δlα � 1, and this condition is not automatically satisfied for

all reasonable choices of the physical parameters. This is a limitation of the method

of the solution, however, not of the physical model. Although the analytical solution

does not capture the frequency scaling effects, these are correctly recovered when eq. 6

is solved numerically, as fig. 5 shows. In addition, at the extreme upper range of α

that we considered, ωh/ωp is not very small, and one begins to see strong excitation of

electron plasma waves at the plasma sheath boundary, and perhaps also excitation of

other related resonances. These effects are not included in our model. It is not clear

whether they directly effect electron heating, or exert influence via a modification of the

sheath structure.

Our model entails surprising predictions: Namely, that the heating power does not

depend on the parameter Hh and cannot be expressed as if the two frequencies acted

additively. As we suggested above, the spatial structure of the sheath is controlled by

low-frequency parameters, with the result that the heating power is enhanced when the

two frequencies act together, because F2(Hl) � F2(Hh) and δ2
h � δ2

l , where we recall

that δl,h ∝ J̃l,h. Specifically, since

〈Slh〉
〈Sl〉+ 〈Sh〉

≈ 1 + 1.1β2

1 + β4/α2
(21)

when Hl,h are not too large so A2(H) ∼ 36H/55, the maximum enhancement is

approximately (1 + α)/2, which occurs when β ≈
√

α. These parameters are within the
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typical range of current experiments. The enhancement occurs because the application

of the low frequency changes the sheath structure, allowing the high frequency to explore

a much wider dynamic range of plasma density. In fig. 6, we compare the heating effect

produced by each frequency separately with their combined effect, showing that the

predicted enhancement does exist. In the case shown, which is close to the predicted

maximum with β/
√

α ∼ 1, the enhancement factor is approximately 5, compared to the

predicted 7. The discrepancy is mostly because Hh is significantly less than 1, and the

single frequency theory is not highly accurate in that case. We note that the application

of the low frequency produces an appreciable expansion of the volume of plasma affected

by the heating process.

We note that in the present theory, the average heating power is exactly zero on the

plasma side of the ion sheath edge, because both n and T are assumed to be uniform in

that region. In simulation, and presumably in experiments, there is a region of negative

heating in the bulk plasma adjacent to the sheath, which is clearly visible in fig. 6. This

effect has been discussed elsewhere for the single frequency case [20, 21, 8]. The origin

is essentially a thermal disturbance, i.e. T is not spatially uniform,

The theory we have been discussing cannot presently be extended by formal means

to the interesting limit Jl → 0, because the sheath model of [13] is not valid in that case.

However, a simple ansätz allows us to construct an extension that connects the present

dual frequency theory smoothly to the single frequency theory of [7]. This ansätz entails

the definition of an effective value of the parameter H that is given by

Heff =
√

H2
l + H2

h. (22)

If this effective value is inserted into eq. 20, an expression is obtained that is essentially

identical with the present theory when Hl � Hh, almost identical with the results of [7]

when Hl � Hh, and reasonably behaved in the transition between these two regimes.

In fig. 7, we compare this generalized expression with simulation results.

3. Ohmic heating

In this section, we calculate the Ohmic heating in sheath region of a dual frequency

discharge, in which as before we assume that the sheath structure is adequately described

by the analytical model of ref. [13]. This is appropriate when then the plasma is

weakly collisional, so that the ion transport remains inertia limited. This is probably

closer to the typical experimental situation than the friction limited case considered in

[15]. Moreover, the model of [15] shares with [22] an inconvenient inconsistency, which

prevents the collisionless heating model discussed above from being used with these

models. This thwarts one purpose of the present paper, namely the comparison of the

significance of Ohmic and collisionless heating that we discuss below. In general, the

Ohmic heating power per unit volume dissipated in a plasma with density n and electron

collision frequency νe is

POhmic =
meνeJ

2

ne2
(23)
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where J is the current density, and we have assumed that any ionic contribution to

the heating effect is negligible. The Ohmic power dissipation per unit area within the

sheath is now found by integrating from the ion sheath edge located at x = 0 to the

instantaneous electron sheath edge at x = s(φ), where θ = ωlt:

Sohmic(t) =
∫ s(θ)

0
ds

meνe

n(s)e2
(Jl sin ωlt + Jh sin ωht)

2 (24)

= (Jl sin ωlt + Jh sin ωht)
2 meνe

e2

∫ s(θ)

0

ds

n(s)
(25)

= (Jl sin ωlt + Jh sin ωht)
2 meνe

e2

∫ φ

0

dθ

n(s)

ds

dθ
(26)

These expressions hold for any sheath model. If we assume that the sheath structure is

adequately described by the analytical model of [13], then:

ds

dθ
= s0 (sin θ + β sin αθ)

(
1 + Hl

∫ θ

0
dθ′ (sin θ′ − θ′ cos θ′) (sin θ′ + β sin αθ′)

)
(27)

and

ni = n0

(
1 + Hl

∫ θ

0
dθ′ (sin θ′ − θ′ cos θ′) (sin θ′ + β sin αθ′)

)−1

(28)

so ∫ θ

0

ds

dθ′
dθ′

ni

=
s0

n0

∫ θ

0
dθ′ (sin θ′ + β sin αθ′)

×
(

1 + Hl

∫ θ′

0
dθ′′ (sin θ′′ − θ′′ cos θ′′) (sin θ′′ + β sin αθ′′)

)2

(29)

≡ s0

n0

F3(θ, α, β, H). (30)

Then:

S̄ohmic =
1

π

∫ π

0
Sohmicdθ (31)

=
2meνes0J

2
l

e2n0π

∫ π

0
dθ (sin θ + β sin αθ)2 F3(θ, α, β, Hl) (32)

=
32

π2
Qbδ

3
l

(
νe

ωl

) ∫ π

0
dθ (sin θ + β sin αθ)2 F3(θ, α, β, Hl) (33)

=
32

π
Qbδ

3
l

(
νe

ωl

)
F4(α, β, H). (34)

We have not sought an exact analytical treatment of the integral F4, because of the

difficulties referred to in [13], i.e., even if an exact result formally exists, it is likely

to be unhelpful. However, a convenient approximation can be found that is accurate

when α � 1, which is the limit of primary practical interest. In this case, we can

write the integrand in F4 as a power series in trigonometric functions with argument

is αθ. These functions are of course periodic, and vary much more rapidly with θ

than the remainder of the integrand. Therefore, we can carry out a local average over
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the integrand to remove the explicit dependence on α. With this approximation, the

remaining integration can be carried out exactly to find:

F4 ≈ A4 =
[
1

2

(
1 + β2

)
+

1

π

(
512

675
+

32

27
β2
)

Hl +
(

14912

165375
+

1336

3375
β2
)

H2
l

]
.(35)

Fig. 8 compares this approximation with a numerical quadrature of the exact integral,

F4. The approximation is good when β/α � 1, that is, whenever the sheath model of

[13] is good, rather independently of the value of Hl. It may be useful to replace Hl in

eq. 35 with Heff . This does not yield an entirely satisfactory result, because the limits

J̃l → 0 and J̃h → 0 should give identical expressions after an exchange of the subscripts

l and h, and this is not the case here. However, the results differ only by numerical

coefficients that are O(1), and this may count as a useful approximation in many cases.

The result eq. 35 shows that Ohmic heating, like collisionless heating, is enhanced

by the combination of two frequencies. The physical mechanism of the enhancement is

similar—when the lower frequency is applied, the spatial structure of the sheath region

is modified, and in particular the ion density near the boundary is greatly reduced.

When the sheath is collapsed, and these regions are populated by electrons, the higher

frequency current is conducted through a much more tenuous plasma than would be the

case if the lower frequency was absent. The Ohmic heating effect is thereby dramatically

enhanced.

4. Ohmic and collisionless heating

Typical dual frequency discharges will be excited by some combination of collisionless

and Ohmic heating. The superposition of these two heating mechanisms can produce a

rather complex spatio-temporal pattern. Some indication of this is shown in fig. 9, which

shows the total electron heating as a function time, integrated over the quasi-neutral

part of the sheath region. The data shown in this figure include not only the collisionless

heating and the Ohmic heating discussed above, but also the terms associated with the

oscillation of the electron drift velocity and temperature within the sheath region. These

last two terms do not contribute any net heating, but they are an appreciable part of

the instantanous power.

We have seen that both collisionless and Ohmic heating are enhanced when

currents at two disparate frequencies are superimposed, and that the mechanism of this

enhancement is the control over the sheath structure exerted by the lower frequency

in combination with the higher current density associated with the higher frequency.

Inspection and comparison of eqs. 20 and 35 suggests that the enhancement effect on

the Ohmic heating will prove stronger, at least when Hl is large. This indeed the

case. Fig. 10 shows the time-averaged collisionless and Ohmic heating components,

with the total heating, as a function of the low-frequency current density, with all other

parameters held constant. It is clear that the application of the low-frequency current

can produce a transition from a situation that is dominated by collisionless heating to

one dominated by Ohmic heating. Of course, whether this occurs or not also depends
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on the neutral gas pressure, and in fig. 11 we show the ratio of collisionless to Ohmic

heating as a function of low-frequency current density for three disparate gas pressures,

covering probably the entire range of practical interest. These data show that it is rather

unlikely that a dual frequency discharge used for plasma processing will be dominantly

heated by collisionless processes. For example, a typical operating pressure for a dual

frequency etching discharge is ∼ 50 mTorr, under which condition probably much more

than half of the net heating power is Ohmic.

5. Concluding Remarks

In this paper we have developed approximate expressions for collisionless and Ohmic

heating of electrons in dual-frequency discharges. These expressions show that both

kinds of heating are much affected by the low-frequency current density, because the

large voltage associated with that current is the dominant influence on the spatial

structure of the sheath region. Although both heating mechanisms are enhanced by the

low-frequency current, the effect on Ohmic heating is stronger, with the implication that

the dominant heating mechanism can be changed. Indeed, under typical experimental

conditions, a discharge that would be dominated by collisionless heating in the absence

of a low-frequency component in the current can become Ohmically dominated when

the low-frequency current is applied.

We have neglected a number of issues that may need to be considered in future work.

For example, we have assumed that electromagnetic [23] and resonant phenomena [24]

may be ignored. We believe this to be reasonable under most experimental conditions

today. However, there is a tendency towards increasing the higher frequency in industrial

practice, which if continued could vitiate these assumptions. At the moment, nothing is

known of the heating mechanisms that might be dominant at very high frequencies. We

have also taken rather simple view of the effect of friction on the sheath dynamics. For

example, it is known that under some conditions, the sheath electric field may reverse

[25], with sometimes dramatic effects on electron heating. Such effects could occur in

dual-frequency discharges.
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Figure 1. Comparison of the value of the integral F1 determined by a quadrature
with the approximation to A1 given by eq. 19. The parameters held fixed are Hl = 11
and β = 3.6.
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Figure 2. Collisionless heating power as a function of space and time, calculated by
the particle simulation, with J̃l = 10 A m−2, ωl = 2π × 2 MHz, J̃h = 20 A m−2 and
ωl = 2π × 26 MHz, and the plasma parameters discussed in the text. The ion sheath
edge is at x = 0 and the electrode is at x = smax.
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Figure 3. Temperature of electrons in the sheath computed from the analytic theory
of the text (solid line) and from the particle-in-cell simulation (dashed line), for the
conditions noted in fig. 2.
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Figure 4. Normalized collisionless heating power as a function of β ≡ J̃h/J̃l, with J̃h

as the parameter varied (so that Hl is constant) and with α = ωh/ωl = 13.
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Figure 5. Normalized collisionless heating power as a function of α/β ≡ ωhJ̃l/ωlJ̃h,
with ωh and J̃h as the parameters varied (so that Hl is constant). Simulation data are
shown by points for two values of β, corresponding to J̃h = 18 A m−2 and 36 A m−2.
ωh is in the range 2π× 26 MHz to 2π× 104 MHz. The flat lines is the predictions of
eq. 20, the sloping lines are derived from numerical solutions of eq. 6.
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corresponding to the two frequencies acting separately and both acting together. Note
that the ion sheath edge in each case is approximately located at the transition to
negative power absorption, and that the sheath width is appreciably influenced by the
application of the high frequency [13], relative to the low frequency acting alone. The
parameter values used are J̃l = 10 A m−2, ωl = 2π × 2 MHz, J̃h = 36 A m−2 and
ωl = 2π × 26 MHz.
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collisionless, inertial, and Ohmic components, with ωl/2π = 2 MHz, ωh/2π = 26 MHz,
J̃h = 36 A m−2, J̃l = 2 A m−2,n0 = 5× 1015 m−3, Tb = 30000 K, and νe/ωl = 30.
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Figure 10. The collisionless, Ohmic and total heating powers, shown as a function of
the low frequency current density. Solid line—total; long dashed line—Ohmic; short
dashed line—collisionless. Conditions as for fig. 9, apart from J̃l
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Figure 11. The ratio of the collisionless and Ohmic heating powers for various
electron collision frequencies, corresponding approximately to conditions in argon at
pressures of 10 (solid line), 100 (long dashed line) and 1000 mTorr (short dashed line)
corresponding to νe/ωl = 3, 30, 300. Conditions as for fig. 9, apart from J̃l and νe.


