
Topology 45 (2006) 209–259
www.elsevier.com/locate/top

The Baum–Connes conjecture via localisation of categories�

Ralf Meyera,∗, Ryszard Nestb

aMathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, 48149 Münster, Germany
bK�benhavns Universitets Institut for Matematiske Fag, Universitetsparken 5, 2100 KZbenhavn, Denmark

Received 19 April 2004; received in revised form 10 February 2005

Abstract

We redefine the Baum–Connes assembly map using simplicial approximation in the equivariant Kasparov cate-
gory. This new interpretation is ideal for studying functorial properties and gives analogues of the Baum–Connes
assembly map for other equivariant homology theories. We extend many of the known techniques for proving the
Baum–Connes conjecture to this more general setting.
� 2005 Elsevier Ltd. All rights reserved.

MSC: 19K35; 46L80

Keywords: K-theory; Triangulated category; Crossed product; C∗-algebra; localisation; Baum-Connes conjecture

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
1.1. Some general conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

2. Triangulated categories of operator algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
2.1. Suspensions and mapping cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
2.2. Long exact sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
2.3. Extension triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
2.4. Homotopy limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

� This research was supported by the EU-Network Quantum Spaces and Noncommutative Geometry (Contract HPRN-CT-
2002-00280) and the Deutsche Forschungsgemeinschaft (SFB 478).∗ Corresponding author.

E-mail addresses: rameyer@math.uni-muenster.de (R. Meyer), rnest@math.ku.dk (R. Nest).

0040-9383/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.top.2005.07.001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81975129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/top
mailto:rameyer@math.uni-muenster.de
mailto:rnest@math.ku.dk


210 R. Meyer, R. Nest / Topology 45 (2006) 209–259

2.5. Triangulated functors and subcategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
2.6. Localisation of categories and functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

3. Preliminaries on compact subgroups and some functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
3.1. Compact subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
3.2. Functors on Kasparov categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

4. A decomposition of the Kasparov category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
5. The Baum–Connes assembly map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
6. The Brown Representability Theorem and the Dirac morphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

6.1. Construction of Dirac morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
6.2. A localisation related to the Universal Coefficient Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

7. The derived category and proper actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
8. Dual Dirac morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

8.1. Approximate dual Dirac morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
9. The strong Baum–Connes conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

10. Permanence properties of the (strong) Baum–Connes conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
10.1. Restriction and induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
10.2. Full and reduced crossed products and functoriality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
10.3. Unions of open subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
10.4. Direct products of groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
10.5. Group extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
10.6. Real versus complex assembly maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Appendix A. The equivariant Kasparov category is triangulated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

1. Introduction

Let G be a second countable locally compact group. Let A be a separable C∗-algebra with a strongly
continuous action of G and let G�rA be the reduced crossed product, which is another separable C∗-
algebra. The aim of the Baum–Connes conjecture (with coefficients) is to compute the K-theory of G�rA.
For the trivial action of G on C (or R), this specialises to K∗(C∗r (G)), the K-theory of the reduced C∗-
algebra of G. One defines a certain graded Abelian group Ktop∗ (G, A), called the topological K-theory of
G with coefficients A, and a homomorphism

�A: Ktop∗ (G, A)→ K∗(G�rA), (1)

which is called the Baum–Connes assembly map. The Baum–Connes conjecture for G with coefficients
A asserts that this map is an isomorphism. It has important applications in topology and ring theory. The
conjecture is known to hold in many cases, for instance, for amenable groups [23]. A recent survey article
on the Baum–Connes conjecture is [22].

Despite its evident success, the usual definition of the Baum–Connes assembly map has some important
shortcomings. At first sight Ktop∗ (G, A) may seem even harder to compute than K∗(G�rA). Experience
shows that this is not the case. Nevertheless, there are situations where Ktop∗ (G, A) creates more trouble
than K∗(G�rA). For instance, most of the work required to prove the permanence properties of the
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Baum–Connes conjecture is needed to extend evident properties of K∗(G�rA) to Ktop∗ (G, A). The mean-
ing of the Baum–Connes conjecture is rather mysterious: it is not a priori clear that Ktop∗ (G, A) should
have anything to do with K∗(G�rA). A related problem is that the Baum–Connes assembly map only
makes sense for K-theory and not for other interesting equivariant homology theories. For instance, in
connection with the Chern character it would be desirable to have a Baum–Connes assembly map for
local cyclic homology as well.

Our alternative description of the assembly map addresses these shortcomings. It applies to any equiv-
ariant homology theory, that is, any functor defined on the equivariant Kasparov category KKG. For
instance, we can also apply K-homology and local cyclic homology to the crossed product. Actually, this
is nothing so new. Gennadi Kasparov did this using his Dirac dual Dirac method—for all groups to which
his method applies (see [28,29]). In his approach, the topological side of the Baum–Connes conjecture
appears as the �-part of K∗(G�rA), and this �-part makes sense for any functor defined on KKG. Indeed,
our approach is very close to Kasparov’s. We show that one half of Kasparov’s method, namely, the Dirac
morphism, exists in complete generality, and we observe that this suffices to construct the assembly map.
From the technical point of view, this is the main innovation in this article.

Our approach is very suitable to state and prove general functorial properties of the assembly map.
The various known permanence results of the Baum–Connes conjecture become rather transparent in our
setup. Such permanence results have been investigated by several authors. There is a series of papers by
Chabert et al. [10–12,15,16]. Both authors of this article have been quite familiar with their work, and it
has greatly influenced this article. We also reprove a permanence result for unions of groups by Baum
et al. [7] and a result relating the real and complex versions of the Baum–Connes conjecture by Baum
and Karoubi [6] and independently by Schick [39]. In addition, we use results of [39] to prove that the
existence of a �-element for a group G for real and complex coefficients is equivalent.

A good blueprint for our approach towards the Baum–Connes conjecture is the work of Davis and
Lück in [18]. As kindly pointed out by the referee, the approach of Balmer and Matthey in [3–5] is even
closer. However, these are only formal analogies, as we shall explain below.

Davis and Lück only consider discrete groups and reinterpret the Baum–Connes assembly map for
K∗(G�rC0(X)) as follows. A proper G-CW-complex X̃ with a G-equivariant continuous map X̃ → X

is called a proper G-CW-approximation for X if it has the following universal property: any map from a
proper G-CW-complex to X factors through X̃, and this factorisation is unique up to equivariant homotopy.
Such approximations always exist and are unique up to equivariant homotopy equivalence. Given a functor
F on the category of G-spaces, one defines its localisation by LF(X) := F(X̃) (up to isomorphism). It
comes equipped with a map LF(X)→ F(X). For suitable F, this is the Baum–Connes assembly map.

We replace the homotopy category of G-spaces by the G-equivariant Kasparov category KKG, whose
objects are the separable G-C∗-algebras and whose morphism spaces are the bivariant groups KKG

0 (A, B)

defined by Kasparov. We need some extra structure, of course, in order to do algebraic topology. For
our purposes, it is enough to turn KKG into a triangulated category (see [38,46]). The basic examples
of triangulated categories are the derived categories in homological algebra and the stable homotopy
category in algebraic topology. They have enough structure to localise and to do rudimentary homological
algebra. According to our knowledge, Andreas Thom’s thesis [43] is the first work on C∗-algebras where
triangulated categories are explicitly used. Since this structure is crucial for us and not well-known
among operator algebraists, we discuss it in an operator algebraic context in Section 2. We also devote an
appendix to a detailed proof that KKG is a triangulated category. This verification of axioms is not very
illuminating. The reason for including it is that we could not find a good reference.
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We call A ∈ KKG compactly induced if it is KKG-equivalent to IndG
HA′ for some compact subgroup

H ⊆ G and some H-C∗-algebra A′. We let CI ⊆ KKG be the full subcategory of compactly induced
objects and 〈CI〉 the localising subcategory generated by it. The objects of 〈CI〉 are our substitute for
proper G-CW-complexes. The objects of CI behave like the cells out of which proper G-CW-complexes
are built. We define a CI-simplicial approximation of A ∈ KKG as a morphism Ã→ A in KKG with Ã ∈
〈CI〉 such that KKG(P, Ã)�KKG(P, A) for all P ∈ 〈CI〉. We show that CI-simplicial approximations
always exist, are unique, functorial, and have good exactness properties. Therefore, if F : KKG → C is
any homological functor into an Abelian category, then its localisation LF(A) := F(Ã) is again a
homological functor KKG → C. It comes equipped with a natural transformation LF(A) → F(A).
For the functor F(A) := K∗(G�rA), this map is naturally isomorphic to the Baum–Connes assembly
map. In particular,Ktop∗ (G, A)�LF(A). Thus we have redefined the Baum–Connes assembly map as a
localisation.

Of course, we do not expect the map LF(A) → F(A) to be an isomorphism for all functors F. For
instance, consider the K-theory of the full and reduced crossed products. We will show that both functors
have the same localisation. However, the full and reduced group C∗-algebras may have different K-theory.

A variant of Green’s Imprimitivity Theorem [20] for reduced crossed products says that G�rIndG
HA for

a compact subgroup H ⊆ G is Morita–Rieffel equivalent to H�A. Combining this with the Green–Julg
Theorem [25], we get

K∗(G�rIndG
HA)�K∗(H�A)�KH∗ (A).

Hence K∗(G�rB) is comparatively easy to compute for B ∈ CI. For an object of 〈CI〉, we can, in
principle, compute its K-theory by decomposing it into building blocks from CI. In a forthcoming
article, we will discuss a spectral sequence that organises this computation. As a result, K∗(G�rÃ) is
quite tractable for Ã ∈ 〈CI〉. The CI-simplicial approximation replaces an arbitrary coefficient algebra
A by the best approximation to A in this tractable subcategory in the hope that K∗(G�rÃ)�Ktop∗ (G, A)

is then a good approximation to K∗(G�rA).
Above we have related the Baum–Connes assembly map to simplicial approximation in homotopy

theory. Alternatively, we can use an analogy to homological algebra. In this picture, the category KKG

corresponds to the homotopy category of chain complexes over an Abelian category. The latter has chain
complexes as objects and homotopy classes of chain maps as morphisms. To do homological algebra,
we also need exact chain complexes and quasi-isomorphisms. In our context, these have the following
analogues.

A G-C∗-algebra is called weakly contractible if it is KKH -equivalent to 0 for all compact subgroups
H ⊆ G. We let CC ⊆ KKG be the full subcategory of weakly contractible objects. This is a localising
subcategory of KKG. We call f ∈ KKG(A, B) a weak equivalence if it is invertible in KKH(A, B) for
all compact subgroups H ⊆ G. The weakly contractible objects and the weak equivalences determine
each other: a morphism is a weak equivalence if and only if its “mapping cone” is weakly contractible,
and A is weakly contractible if and only if the zero map 0→ A is a weak equivalence.

The subcategories CC and 〈CI〉 are “orthogonal complements” in the sense that B ∈ CC if and only if
KKG(A, B)= 0 for all A ∈ 〈CI〉, and A ∈ 〈CI〉 if and only if KKG(A, B)= 0 for all B ∈ CC. Hence
f ∈ KKG(B, B ′) is a weak equivalence if and only if the induced map KKG(A, B)→ KKG(A, B ′) is
an isomorphism for all A ∈ 〈CI〉. Therefore, a CI-simplicial approximation for A is the same as a weak
equivalence f ∈ KKG(Ã, A) with Ã ∈ 〈CI〉.
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We now return to our analogy with homological algebra. The weakly contractible objects play the role of
the exact chain complexes and the weak equivalences play the role of the quasi-isomorphisms. Objects of
〈CI〉 correspond to projective chain complexes as defined in [31]. Hence CI-simplicial approximations
correspond to projective resolutions. In homological algebra, we can compute the total left derived functor
of a functor F by applying F to a projective resolution. Thus LF as defined above corresponds to the total
left derived functor of F. In particular, Ktop∗ (G, A) appears as the total left derived functor of K∗(G�rA).

Bernhard Keller’s presentation of homological algebra in [31] is quite close to our constructions because
it relies very much on triangulated categories. This is unusual because most authors prefer to use the finer
structure of Abelian categories. However, nothing in our setup corresponds to the underlying Abelian
category. Hence we only get an analogue of the total derived functor, not of the satellite functors that
are usually called derived functors. A more serious difference is that there are almost no interesting
exact functors in homological algebra. In contrast, the Baum–Connes conjecture asserts that the functor
K∗(G�rA) agrees with its total derived functor, which is equivalent to exactness in classical homological
algebra. Hence the analogy to homological algebra is somewhat misleading.

Using weak equivalences, we can also formulate the Baum–Connes conjecture with coefficients as
a rigidity statement. The assembly map LF(A) → F(A) is an isomorphism for all A if and only if F
maps all weak equivalences to isomorphisms. If F satisfies some exactness property, this is equivalent to
F(A)=0 for all A ∈ CC. If A ∈ CC, then A is KKG-equivalent to a G-C∗-algebra that is H-equivariantly
contractible for any compact subgroup H ⊆ G (replace A by the universal algebra qsA defined in [34]).
Thus the Baum–Connes conjecture with coefficients is equivalent to the statement that K∗(G�rA)= 0 if
A is H-equivariantly contractible for all compact subgroups H ⊆ G. Another equivalent formulation that
we obtain in Section 9 is the following. The Baum–Connes conjecture with coefficients is equivalent to the
statement that K∗(G�rA)= 0 if K∗(H�A)= 0 for all compact subgroups H ⊆ G. Both reformulations
of the Baum–Connes conjecture with coefficients are as elementary as possible: they involve nothing
more than compact subgroups, K-theory and reduced crossed products.

The localisation of the homotopy category of chain complexes over an Abelian category at the sub-
category of exact chain complexes is its derived category, which is the category of primary interest in
homological algebra. In our context, it corresponds to the localisation KKG/CC. We describe KKG/CC

in more classical terms, using the universal proper G-space EG. We identify the space of morphisms
A → B in KKG/CC with the group RKKG(EG;A, B) as defined by Kasparov [28]. The canonical
functor KKG→ KKG/CC is the obvious one,

p∗EG: KKG(A, B)→ RKKG(EG;A, B).

As a consequence, if A is weakly contractible, then p∗Y (A)�0 for any proper G-space Y. This means
that the homogeneous spaces G/H for H ⊆ G compact, which are implicitly used in the definition of
weak contractibility, already generate all proper G-spaces. Another consequence is that proper G-C∗-
algebras in the sense of Kasparov belong to 〈CI〉. Conversely, for many groups any object of 〈CI〉 is
KKG-equivalent to a proper G-C∗-algebra (see the end of Section 7).

Let � ∈ KKG be the real or complex numbers, depending on the category we work with. We have
a tensor product operation in KKG, which is nicely compatible with the subcategories CC and CI.
Therefore, if D ∈ KKG(P, �) is a CI-simplicial approximation for �, then D⊗ idA ∈ KKG(P⊗ A, A)

is a CI-simplicial approximation for A ∈ KKG. Thus we can describe the localisation of a functor more
explicitly as LF(A) := F(P ⊗ A). We call D a Dirac morphism for G. Its existence is equivalent to
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the representability of a certain functor. Eventually, this is deduced from a generalisation of Brown’s
Representability Theorem to triangulated categories.

The following example of a Dirac morphism motivates our terminology. Suppose that EG is a smooth
manifold. Replacing it by a suspension of T ∗EG, we achieve that EG has a G-invariant spin structure
and that 8 | dim EG. Then the Dirac operator on EG defines an element of KKG

0 (C0(EG), �); this is
a Dirac morphism for G. We can also describe it as the element p! ∈ KKG

0 (C0(EG), �) associated to
the constant map p:EG → � by wrong way functoriality. Unfortunately, wrong way functoriality only
works for manifolds. Extending it to non-Hausdorff manifolds as in [29], one can construct explicit Dirac
morphisms also for groups acting properly and simplicially on finite dimensional simplicial complexes.
However, it is unclear how to adapt this to infinite dimensional situations.

Since we work in the Kasparov category, Bott periodicity is an integral part of our setup. The above
example of a Dirac morphism shows that wrong way functoriality and hence Bott periodicity indeed play
significant roles. This distinguishes our approach from [3–5,18]. The bad news is that we cannot treat
homology theories such as algebraic K-theory that do not satisfy periodicity. The good news is that the
Dirac dual Dirac method, which is one of the main proof techniques in connection with the Baum–Connes
conjecture, is already part of our setup. In examples, this method usually arises as an equivariant version
of Bott periodicity.

A dual Dirac morphism is an element � ∈ KKG(�, P) that is a left-inverse to the Dirac morphism
D ∈ KKG(P, �), that is, �D = idP. Suppose that it exists. Then � = D� is an idempotent in KKG(�, �).
By exterior product, we get idempotents �A ∈ KKG(A, A) for all A ∈ KKG. We have A ∈ CC if and
only if �A= 0, and A ∈ 〈CI〉 if and only if �A= 1. The category KKG is equivalent to the direct product
KKG�CC× 〈CI〉. Therefore, the assembly map is split injective for any covariant functor. For groups
with the Haagerup property and, in particular, for amenable groups, a dual Dirac morphism exists and we
have �= 1. This important theorem is due to Higson and Kasparov [23]. In this case, weak equivalences
are already isomorphisms in KKG. Hence LF = F for any functor F.

When we compose two functors in homological algebra, it frequently happens that L(F ′◦F)�LF ′◦LF .
This holds, for instance, if F maps projectives to projectives. We check that the restriction and induction
functors preserve the subcategories CC and 〈CI〉. The same holds for the complexification functor
from real to complex KK-theory and many others. The ensuing identities of localised functors imply
permanence properties of the Baum–Connes conjecture.

Another useful idea that our new approach allows is the following. Instead of deriving the functor A 
→
K∗(G�rA), we may also derive the crossed product functor A 
→ G�rA itself. Its localisation G�

L
r A is

a triangulated functor from KKG to KK. It can be described explicitly as G�
L
r A =G�r(P⊗ A) if D ∈

KKG(P, �) is a Dirac morphism. The Baum–Connes conjecture asks for D∗ ∈ KK(G�
L
r A, G�rA) to in-

duce an isomorphism on K-theory. Instead, we can ask it to be a KK-equivalence. Then the Baum–Connes
conjecture holds for F(G�rA) for any split exact, stable homotopy functor F on C∗-algebras because
such functors descend to the category KK. For instance, this covers local cyclic (co)homology and K-
homology.

This stronger conjecture is known to be false in some cases where the Baum–Connes conjecture
holds. Nevertheless, it holds in many examples. For groups with the Haagerup property, we have �= 1,
so that LF = F for any functor, anyway. If both G�rA and G�

L
r A satisfy the Universal Coefficient

Theorem (UCT) in KK, then an isomorphism on K-theory is automatically a KK-equivalence. Since
G�

L
r � always satisfies the UCT, the strong Baum–Connes conjecture with trivial coefficients holds if

and only if the usual Baum–Connes conjecture holds and C∗r (G) satisfies the UCT. This is known
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to be the case for almost connected groups and linear algebraic groups over p-adic number fields,
see [14,16].

This article is the first step in a programme to extend the Baum–Connes conjecture to quantum group
crossed products. It does not seem a good idea to extend the usual construction in the group case because it
is not clear whether the resulting analogue of Ktop∗ (G, A) can be computed. Even if we had a good notion of
a proper action of a quantum group, these actions would certainly occur on very non-commutative spaces,
so that we have to “quantise” the algebraic topology needed to compute Ktop∗ (G, A). The framework
of triangulated categories and localisation of functors is ideal for this purpose. In the group case, the
homogeneous spaces G/H for compact subgroups H ⊆ G generate all proper actions. Thus we expect
that we can formulate the Baum–Connes conjecture for quantum groups using quantum homogeneous
spaces instead of proper actions. However, we still need some further algebraic structure: restriction and
induction functors and tensor products of coactions. We plan to treat this additional structure and to
construct a Baum–Connes assembly map for quantum groups in a sequel to this paper. Here we only
consider the classical case of group actions.

1.1. Some general conventions

Let C be a category. We write A ∈ C to denote that A is an object of C, and C(A, B) for the space of
morphisms A→ B in C.

It makes no difference whether we work with real, “real”, or complex C∗-algebras. Except for Section
10.6, we do not distinguish between these cases in our notation. Of course, standard C∗-algebras like
C0(X) and C∗r (G) have to be taken in the appropriate category. We denote the one-point space by � and
also write �= C(�). Thus � denotes the complex or real numbers depending on the category we use.

Locally compact groups and spaces are tacitly assumed to be second countable, and C∗-algebras are
tacitly assumed to be separable. Let G be a locally compact group and let X be a locally compact G-space.
A G-C∗-algebra is a C∗-algebra equipped with a strongly continuous action of G by automorphisms.
A G�X-C∗-algebra is a G-C∗-algebra equipped with a G-equivariant essential ∗-homomorphism from
C0(X) to the centre of its multiplier algebra. Kasparov defines bivariant K-theory groupsRKKG∗ (X;A, B)

involving these data in [28, Definition 2.19]. The notation RKKG∗ (X;A, B) should be distinguished from
RKKG∗ (X;A, B). The latter is defined for two G-C∗-algebras A and B by

RKKG∗ (X;A, B) := RKKG∗ (X;C0(X, A), C0(X, B)). (2)

Since RKKG∗ (X;A, B) agrees with the bivariant K-groups for the groupoid G�X as defined in [32],
we denote it by KKG�X∗ (A, B). For several purposes, it is useful to generalise from groups to groupoids.
However, we do not treat arbitrary groupoids because it is not so clear what should correspond to the com-
pact subgroups in this case. We work with transformation groups throughout because this generalisation
is not more difficult than the group case and useful for several applications.

We write K∗(A) for the graded Abelian group n 
→ Kn(A), n ∈ Z, and similarly for KKG�X∗ (A, B).
We usually omit the subscript 0, that is, K(A) := K0(A), etc.

The G�X-equivariant Kasparov category is the additive category whose objects are the G�X-C∗-
algebras and whose group of morphisms A → B is KKG�X

0 (A, B); the composition is the Kasparov
product. We denote this category by KKG�X.
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The notion of equivalence for G�X-C∗-algebras that we encounter most frequently is KK-equivalence,
that is, isomorphism in KKG�X, which we simply denote by “�”. Sometimes we may want to stress that
two G�X-C∗-algebras are more than just KK-equivalent. We write A ≈ B if A and B are isomorphic
as G�X-C∗-algebras and A∼MB if A and B are G�X-equivariantly Morita–Rieffel equivalent. Both
relations imply A�B.

2. Triangulated categories of operator algebras

In this section, we explain triangulated categories in the context of equivariant Kasparov theory. The
purpose is to introduce operator algebraists to the language of triangulated categories, which we are
using throughout this article. We hope that it allows them to understand this article without having to
read the specialised literature on triangulated categories (like [38,46]). Thus we translate various known
results of non-commutative topology into the language of triangulated categories. In addition, we sketch
how to prove basic facts about localisation of triangulated categories in the special case where there are
enough projectives. There is nothing essentially new in this section. The only small exception is the rather
satisfactory treatment of inductive limits of C∗-algebras in Section 2.4.

The two motivating examples of triangulated categories are the stable homotopy category from algebraic
topology and the derived categories of Abelian categories from homological algebra. The definition of a
triangulated category formalises some important structure that is present in these categories. The additional
structure consists of a translation automorphism and a class of exact triangles (often called distinguished
triangles). We first explain what these are for KKG�X.

2.1. Suspensions and mapping cones

Let �: KKG�X → KKG�X be the suspension functor �A := C0(R) ⊗ A. This is supposed to be the
translation automorphism in our case. However, it is only an equivalence and not an isomorphism of

categories. This defect is repaired by the following trick. We replace KKG�X by the category K̃K
G�X

whose objects are pairs (A, n) with A ∈ KKG�X, n ∈ Z, with morphisms

K̃K
G�X

((A, n), (B, m)) := lim−→
p∈N

KKG�X(�p+nA, �p+mB).

Actually, since the maps KKG�X(A, B)→ KKG�X(�A, �B) are isomorphisms by Bott periodicity, we

can omit the direct limit over p. Morphisms in K̃K
G�X

are composed in the obvious fashion. We define

the translation or suspension automorphism on K̃K
G�X

by �(A, n) := (A, n+ 1). The evident functor

KKG�X → K̃K
G�X

, A 
→ (A, 0), identifies KKG�X with a full subcategory of K̃K
G�X

. Any object of

K̃K
G�X

is isomorphic to one from this subcategory because Bott periodicity yields (A, n)�(�n mod 8A, 0)

for all n ∈ Z, A ∈ KKG�X. Thus the categories K̃K
G�X

and KKG�X are equivalent. It is not necessary

to distinguish between K̃K
G�X

and KKG�X except in very formal arguments and definitions. Most of
the time, we ignore the difference between these two categories.

Let f : A→ B be an equivariant ∗-homomorphism. Then its mapping cone

cone(f ) := {(a, b) ∈ A× C0(]0, 1], B) | f (a)= b(1)} (3)
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is again a G�X-C∗-algebra and there are natural equivariant ∗-homomorphisms

�B
�−→ cone(f )

�−→A
f−→B. (4)

Such diagrams are called mapping cone triangles. A diagram �B ′ → C′ → A′ → B ′ in K̃K
G�X

is
called an exact triangle if it is isomorphic to a mapping cone triangle. That is, there is an equivariant
∗-homomorphism f : A→ B and a commutative diagram

where �, �, � are isomorphisms in K̃K
G�X

and �� is the suspension of �.

Proposition 2.1. The category K̃K
G�X

with �−1 as translation functor and with the exact triangles as
described above is a triangulated category. It has countable direct sums: they are the usualC∗-direct sums.

It is proven in the appendix that K̃K
G�X

is triangulated. It is shown in [28] that KKG�X(
⊕

An, B)�∏
KKG�X(An, B). This means that the usual C∗-direct sum is a direct sum operation also in KKG�X.
Notice that the translation functor is the inverse of the suspension �. The reason for this is as follows. The

axioms of a triangulated category are modelled after the stable homotopy category, and the functor from
spaces to C∗-algebras is contravariant. Hence we ought to work with the opposite category of KKG�X.
The opposite category of a triangulated category becomes again triangulated if we use “the same” exact
triangles and replace the translation functor by its inverse. Since we want to work with KKG�X and not
its opposite and retain the usual constructions from the stable homotopy category, we sometimes deviate
in our conventions from the usual ones for a triangulated category. For instance, we always write exact
triangles in the form �B → C → A→ B.

One of the axioms of a triangulated category requires any f ∈ KKG�X(A, B) to be part of an exact

triangle �B → C → A
f→B. We call this triangle a mapping cone triangle for f and C a mapping cone

for f. We can use the mapping cone triangle (4) if f is an equivariant ∗-homomorphism. In general, we
replace f by an equivariant ∗-isomorphism f ′: qsA→ qsB and then take a mapping cone triangle of f ′
as in (4). The universal C∗-algebra qsA is defined in [34]. It is important that qsA is isomorphic to A in
KKG�X. We warn the reader that the above construction only works for ungraded C∗-algebras. For this
reason, the Kasparov category of graded C∗-algebras is not triangulated. We can represent elements of
KK(A, B) by equivariant, grading preserving ∗-homomorphisms 	A→ K⊗B as in [34]. However, 	A
is no longer KK-equivalent to A.

The mapping cone triangle has the weak functoriality property that for any commutative diagram

whose rows are exact triangles there is a morphism �: C → C′ making the diagram commute. The triple
(�, �, �) is called a morphism of triangles. We do not have a functor essentially because � is not unique.
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At least, the axioms of a triangulated category guarantee that � is an isomorphism if � and � are. Thus the
mapping cone and the mapping cone triangle are unique up to a non-canonical isomorphism.

The following facts are proven in [38].

Lemma 2.2. Let �B → C → A
f→B be an exact triangle. Then C=0 if and only if f is an isomorphism.

That is, a morphism f is an isomorphism if and only if its mapping cone vanishes.
If the map �B → C vanishes, then there is an isomorphism A�C⊕B such that the maps C → A→ B

become the obvious ones. That is, the triangle is isomorphic to a “direct sum” triangle. Conversely, direct
sum triangles are exact.

2.2. Long exact sequences

Let T be a triangulated category, for instance, KKG�X, let Ab be the category of Abelian groups (or
any Abelian category). We call a covariant functor F :T→ Ab homological if F(C)→ F(A)→ F(B)

is exact for any exact triangle �B → C → A→ B. We define Fn(A) := F(�nA) for n ∈ Z. Similarly,
we call a contravariant functor F :T→ Ab cohomological if F(B)→ F(A)→ F(C) is exact for any
exact triangle, and we define Fn(A) := F(�nA). The functor A 
→ T(A, B) is cohomological for any
fixed B and the functor B 
→ T(A, B) is homological for any fixed A. This follows from the axioms of
a triangulated category. Since we can rotate exact triangles, we obtain a long exact sequence (infinite in
both directions)

· · · → Fn(C)→ Fn(A)→ Fn(B)→ Fn−1(C)→ Fn−1(A)→ Fn−1(B)→ · · ·
if F is homological, and a dual long exact sequence for cohomological F. The maps in this sequence are
induced by the maps of the exact triangle, of course.

2.3. Extension triangles

Since any exact triangle in KKG�X is isomorphic to a mapping cone triangle, Section 2.2 only yields
long exact sequences for mapping cone triangles. As in [17], this suffices to get long exact sequences

for suitable extensions. Let K
i

� E
p
� Q be an extension of G�X-C∗-algebras. There is a canonical

equivariant ∗-homomorphism K → cone(p) that makes the diagram

(5)

commute. The bottom row is the mapping cone triangle, of course. In the non-equivariant case, there is a
canonical isomorphism KK(�Q, K)�Ext(Q, K). There also exist similar results in the equivariant case
[44]. If the extension has a completely positive, contractive, equivariant cross section, then it defines an
element of ExtG�X(Q, K)�KKG�X(�Q, K). This provides the dotted arrow in (5). Furthermore, the
vertical map K → cone(p) is invertible in KKG�X in this case. This can be proven directly and then used
to prove excision for the given extension. Conversely, it follows from excision and the Puppe sequence
using the Five Lemma.
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Definition 2.3. We call the extension admissible if the map K → cone(p) in (5) is invertible in KKG�X.
Then there is a unique map �Q → K that makes (5) commute. The triangle �Q → K → E → Q is
called an extension triangle.

If an extension is admissible, then the vertical maps in (5) form an isomorphism of triangles. Hence
extension triangles are exact. Not every extension is admissible. As we remarked above, extensions with
an equivariant, contractive, completely positive section are admissible. If we replace KKG�X by EG�X,
then every extension becomes admissible.

Let f : A→ B be an equivariant ∗-homomorphism. We claim that the mapping cone triangle for f is
the extension triangle for an appropriate extension. For this we need the mapping cylinder

cyl(f ) := {(a, b) ∈ A× C([0, 1], B) | f (a)= b(1)}. (6)

Given b ∈ B, let const b ∈ C([0, 1], B) be the constant function with value b. Define natural ∗-
homomorphisms

pA: cyl(f )→ A, (a, b) 
→ a,

jA: A→ cyl(f ), a 
→ (a, constf (a)),

f̃ : cyl(f )→ B, (a, b) 
→ b(0).

Then pAjA= idA, f̃ jA= f , and jApA is homotopic to the identity map in a natural way. Thus cyl(f ) is
homotopy equivalent to A and this homotopy equivalence identifies the maps f̃ and f. We have a natural
C∗-extension

0→ cone(f )→ cyl(f )
f̃→B → 0. (7)

Build the diagram (5) for this extension. One checks easily that the resulting map cone(f )→ cone(f̃ ) is a
homotopy equivalence, so that the extension (7) is admissible.The composition �B→cone(f̃ )

∼← cone(f )

is naturally homotopy equivalent to the inclusion map �B→cone(f ). Thus the extension triangle for the
admissible extension (7) is isomorphic to the mapping cone triangle for f. It follows that any exact triangle
in KKG�X is isomorphic to an extension triangle for some admissible extension.

2.4. Homotopy limits

Let (An, �n
m) be a countable inductive system in KKG�X, with structure maps �n

m: Am → An for
m�n. (Of course, it suffices to give the maps �m+1

m .) Roughly speaking, its homotopy direct limit is the
correct substitute for the inductive limit for homological computations. Homotopy direct limits play an
important role in the proof of the Brown Representability Theorem 6.1. They also occur in connection
with the behaviour of the Baum–Connes conjecture for unions of open subgroups in Section 10.3.

The homotopy direct limit ho- lim−→ Am is defined to fit in an exact triangle

� ho- lim−→ Am→
⊕

Am
id−S−→

⊕
Am→ ho- lim−→ Am. (8)

Here S is the shift map that maps the summand Am to the summand Am+1 via �m+1
m . Thus the homotopy

direct limit is �−1cone(id − S); it is well-defined up to non-canonical isomorphism and has the same
weak kind of functoriality as mapping cones. The (de)suspensions are due to the passage to opposite
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categories that is implicit in our conventions. This also means that homotopy direct limits in KK behave
like homotopy inverse limits of spaces. The map

⊕
Am → ho- lim−→ Am in (8) is equivalent to maps

�∞m : Am→ ho- lim−→ Am with �∞n ◦ �n
m = �∞m for m�n.

To formulate the characteristic properties of the homotopy limit, we consider (co)homological functors
to the category ofAbelian groups that are compatible with direct sums. This means F(

⊕
Am)�

⊕
F(Am)

in the covariant case and F(
⊕

Am)�
∏

F(Am) in the contravariant case. The functor B 
→ T(A, B) is
not always compatible with direct sums. We call A compact if it is. The functor A 
→ T(A, B) is always
compatible with direct sums: this is just the universal property of direct sums. Hence the following lemma
applies to F(A) := T(A, B) for any B.

Lemma 2.4 (Neeman [36]). If F is homological and compatible with direct sums, then the maps

�∞m : Am → ho- lim−→ Am yield an isomorphism lim−→ Fn(Am)
�→Fn(ho- lim−→ Am). If F is cohomological

and compatible with direct sums, then there is a short exact sequence

0→ lim←−
1Fn−1(Am)→ Fn(ho- lim−→ Am)→ lim←− Fn(Am)→ 0.

The map Fn(ho- lim−→ Am)→ lim←− Fn(Am) is induced by (�∞m )m∈N.

Proof. Consider the homological case first. Apply the long exact homology sequence to (8) and cut the
result into short exact sequences of the form

coker
(

id − S:
⊕

Fn(Am)→
⊕

Fn(Am)
)

�Fn(ho- lim−→ Am)

� ker
(

id − S:
⊕

Fn−1(Am)→
⊕

Fn−1(Am)
)

.

The kernel of id − S vanishes and its cokernel is, by definition, lim−→ Fn(Am). Whence the assertion. In

the cohomological case, we get a short exact sequence

coker
(

id − S:
∏

Fn−1(Am)→
∏

Fn−1(Am)
)

�Fn(ho- lim−→ Am)

� ker
(

id − S:
∏

Fn(Am)→
∏

Fn(Am)
)

.

By definition, the kernel is lim←− Fn(Am) and the cokernel is lim←−
1Fn−1(Am). �

We now specialise to the category KKG�X and relate homotopy direct limits to ordinary direct limits
via mapping telescopes. This is used in our discussion of unions of groups in Section 10.3. Any inductive
system in KKG�X is isomorphic to the image of a direct system of G�X-C∗-algebras. That is, the maps
�n
m are equivariant ∗-homomorphisms and satisfy �n

m ◦ �m
l = �n

l as such. To get this, replace the Am by the
universal algebra qs(Am) as in the appendix.

The following discussion follows the treatment of inductive limits in [40]. Let (Am, �n
m) be an inductive

system of G�X-C∗-algebras. We let A∞ := lim−→ Am and denote the natural maps Am → A∞ by �∞m .
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The mapping telescope of the system is defined as the G-C∗-algebra

T (Am, �n
m) :=

{
(fm) ∈

⊕
m∈N

C([m, m+ 1], Am)

∣∣∣∣
f0(0)= 0 and fm+1(m+ 1)= �m+1

m (fm(m+ 1))

}
.

In the special case where the homomorphisms �n
m are injective, T (Am, �n

m) is the space of all f ∈
C0(]0,∞[, A∞) with f (t) ∈ Am for t �m+ 1. In particular, for the constant inductive system (A∞, id)

we obtain just the suspension �A∞. Since the mapping telescope construction is functorial, there is a
natural equivariant ∗-homomorphism T (An, �n

m)→ �A∞.

Definition 2.5. An inductive system (Am, �n
m) is called admissible if the map T (An, �n

m) → �A∞ is
invertible in KKG�X.

Proposition 2.6. We have lim−→ (Am, �n
m)�ho- lim−→ (Am, �n

m) for admissible inductive systems.

Proof. Evaluation at positive integers defines a natural, surjective, equivariant ∗-homomorphism

: T (Am, �n

m) → ⊕
Am. Its kernel is naturally isomorphic to

⊕
�Am. Thus we obtain a natural ex-

tension

0 −→
⊕

�Am
�−→ T (Am, �n

m)

−→

⊕
Am −→ 0.

Build the diagram (5) for this extension. The map
⊕

�An → cone(
) is a homotopy equivalence in a
natural and hence equivariant fashion. Hence the extension is admissible. Moreover, one easily identifies
the map �

(⊕
Am

)→⊕
�Am with S−id, where S is the shift map defined above. Rotating the extension

triangle, we obtain an exact triangle

This implies �−1T (Am, �n
m)�ho- lim−→ (Am, �n

m) and hence the assertion. �

To obtain a concrete criterion for admissibility, we let T̃ (Am, �n
m) be the variant of T (Am, �n

m) where we
require limt→∞ �∞m (fm(t)) to exist in A∞ instead of lim fm(t)=0. The algebra T̃ (Am, �n

m) is equivariantly
contractible in a natural way. The contracting homotopy is obtained by making sense of the formula
Hsf (t) := �[t][st]f (st) for 0�s�1. There is a natural commutative diagram

whose rows are short exact sequences. The bottom extension is evidently admissible. By definition, the
vertical map on T (. . .) is invertible in KKG�X if and only if the inductive system is admissible. The other
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vertical maps are invertible in any case because T̃ (. . .)�0 in KKG�X. Therefore, if the inductive system
is admissible, then the top row is an admissible extension whose extension triangle is isomorphic to the
one for the bottom row. Conversely, if the top row is an admissible extension, then the vertical map on
T (. . .) is invertible in KKG�X by the uniqueness of mapping cones. As a result, the inductive system is
admissible if and only if the extension in the top row above is admissible. In EG�X, all inductive systems
are admissible because all extensions are admissible.

Lemma 2.7. An inductive system (Am, �n
m) is admissible if there exist equivariant completely positive

contractions �m: A∞ → Am such that �∞m ◦ �m: A∞ → A∞ converges in the point norm topology
towards the identity.

Proof. By the above discussion, the inductive system is admissible if there is an equivariant, contractive,
completely positive cross section A∞ → T̃ (Am, �n

m). It is not hard to see that such a cross section exists
if and only if there are maps �m as in the statement of the lemma. �

2.5. Triangulated functors and subcategories

A triangulated subcategory of a triangulated category T is a full subcategory T′ ⊆ T that is closed
under suspensions and has the exactness property that if �B → C → A→ B is an exact triangle with
A, B ∈ T′, then C ∈ T′ as well. In particular, T′ is closed under isomorphisms and finite direct sums.
A triangulated subcategory is called thick if all retracts (direct summands) of objects of T′ belong to T′.
A triangulated subcategory is indeed a triangulated category in its own right. Given any class of objects
G, there is a smallest (thick) triangulated subcategory containing G. This is called the (thick) triangulated
subcategory generated by G. Since a full subcategory is determined by its class of objects, we do not
distinguish between full subcategories and classes of objects.

Let ℵ be some infinite regular cardinal number. In our applications we only use the countable cardinal
number ℵ0. We suppose that direct sums of cardinality ℵ exist in T. A subcategory of T is called
(ℵ-)localising if it is triangulated and closed under direct sums of cardinality ℵ. We can define the
localising subcategory generated by some class G of objects as above. We denote it by 〈G〉 or 〈G〉ℵ.
Notice that a triangulated subcategory that is closed under direct sums is also closed under homotopy
direct limits. Localising subcategories are automatically thick (see [38]).

It is easy to see that anℵ0-localising subcategory of KKG�X amounts to a classN of G�X-C∗-algebras
with the following properties:

(1) if A and B are KKG�X-equivalent and A ∈N, then B ∈N;
(2) N is closed under suspension;
(3) if f : A→ B is an equivariant ∗-homomorphism with A, B ∈N, then also cone(f ) ∈N;
(4) if An ∈N for all n ∈ N, then also

⊕
n∈NAn ∈N.

We can replace (3) and (4) by the equivalent conditions

(3′) if K�E�Q is an admissible extension and two of K, E, Q belong to N, so does the third;
(4′) if (An, �n

m) is an admissible inductive system with An ∈N for all n ∈ N, then lim−→ An ∈N as well.
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Thus the localising subcategory generated by a class G of G�X-C∗-algebras is the smallest class of
G�X-C∗-algebras containing G with the above four properties. For example, the localising subcategory
of KK generated by � is exactly the bootstrap category (see [9]). The proof uses that extensions and
inductive systems of nuclear C∗-algebras are automatically admissible. Another example of a localising
subcategory of KK is the class of C∗-algebras with vanishing K-theory.We discuss these two subcategories
further in Section 6 to give an easy application of the Brown Representability Theorem.

Let T and T′ be triangulated categories. A functor F :T→ T′ is called triangulated if it is additive,
intertwines the translation automorphisms, and maps exact triangles to exact triangles. Although the latter
condition may look like an exactness condition, it is almost empty. Since any exact triangle in KKG�X is
isomorphic to a mapping cone triangle, a functor is triangulated once it commutes with suspensions and
preserves mapping cone triangles. For instance, the functor A 
→ A⊗minB has this property regardless
of whether B is exact. Similarly, the full and reduced crossed product functors KKG�X → KK are
triangulated. An analogous situation occurs in homological algebra: any additive functor between Abelian
categories gives rise to a triangulated functor between the homotopy categories of chain complexes. The
exactness of the functor only becomes relevant for the derived category.

Let F :T → T′ be a triangulated functor. Its kernel is the class ker F of all objects X of T with
F(X)�0. It is easy to see that ker F is a thick triangulated subcategory of T. If F commutes with direct
sums of cardinality ℵ, then ker F is ℵ-localising.

2.6. Localisation of categories and functors

A basic (and not quite correct) result on triangulated categories asserts that any thick triangulated
subcategory N ⊆ T arises as the kernel of a triangulated functor. Even more, there exists a universal
triangulated functor T→ T/N with kernel N, called localisation functor, such that any other functor
whose kernel contains N factorises uniquely through T/N (see [38]). Its construction is quite involved
and may fail to work in general because the morphism spaces in T/N may turn out to be classes and
not sets.

There are two basic examples of localisations, which have motivated the whole theory of triangulated
categories. They come from homological algebra and homotopy theory, respectively. In homological
algebra, the ambient category T is the homotopy category of chain complexes over an Abelian category.
The subcategory N ⊆ T consists of the exact complexes, that is, complexes with vanishing homology.
A chain map is called a quasi-isomorphism if it induces an isomorphism on homology. The localisation
T/N is, by definition, the derived category of the underlying Abelian category. One of the motivations
for developing the theory of triangulated categories was to understand what additional structure of the
homotopy category of chain complexes is inherited by the derived category.

In homotopy theory there are several important instances of localisations. We only discuss one very
elementary situation which provides a good analogy for our treatment of the Baum–Connes assembly
map. Let T be the stable homotopy category of all topological spaces. We call an object of T weakly
contractible if its stable homotopy groups vanish. A map is called a weak homotopy equivalence if
it induces an isomorphism on stable homotopy groups. Let N ⊆ T be the subcategory of weakly
contractible objects. In homotopy theory one often wants to disregard objects of N, that is, work in the
localisation T/N.

The concepts of a weak equivalence in homotopy theory and of a quasi-isomorphism in homological
algebra become equivalent once formulated in terms of triangulated categories: we call a morphism
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f ∈ T(A, B) an N-weak equivalence or an N-quasi-isomorphisms if cone(f ) ∈ N. Since N ∈ N

if and only if 0 → N is an N-weak equivalence, the weak equivalences and N determine each other
uniquely.

A morphism is a weak equivalence if and only if its image in the localisation T/N is an isomorphism.
This implies several cancellation assertions about weak equivalences. For instance, if f and g are compos-
able and two of the three morphisms f, g and f ◦g are weak equivalences, so is the third. The localisation
has the universal property that any functor out of T, triangulated or not, that maps N-weak equivalences
to isomorphisms, factorises uniquely through the localisation.

In many examples of localisation, some more structure is present. This is formalised in the following
definition. In the simplicial approximation example, let P ⊆ T be the subcategory of all objects that have
the stable homotopy type of a CW-complex, that is, are isomorphic inT to a CW-complex. The Whitehead
Lemma implies that f : X→ Y is a weak homotopy equivalence if and only if f∗:T(P, X)→ T(P, Y )

is an isomorphism for all P ∈ P. Similarly, N ∈ N if and only T(P, N) = 0 for all P ∈ P. Another
important fact is that any space S has a simplicial approximation. This is just a weak equivalence X̃→ X

with X̃ ∈ P. In homological algebra, a similar situation arises if there are “enough projectives”. Then
one lets P be the subcategory of projective chain complexes (see [31]).

Definition 2.8. Let T be a triangulated category and let P and N be thick triangulated subcategories of
T. We call the pair (P,N) complementary if T(P, N)= 0 for all P ∈ P, N ∈N and if for any A ∈ T

there is an exact triangle �N → P → A→ N with P ∈ P, N ∈N.

We shall only need localisations in the situation of complementary subcategories. In this case, the
construction of T/N is easier and there is some important (and well-known) additional structure (see
[36]). We prove some basic results because they are important for our treatment of the Baum–Connes
assembly map.

Proposition 2.9. Let T be a triangulated category and let (P,N) be complementary thick triangulated
subcategories of T.

2.9.1. We have N ∈N if and only if T(P, N)= 0 for all P ∈ P, and P ∈ P if and only if T(P, N)= 0
for all N ∈N; thus P and N determine each other.

2.9.2. The exact triangle �N → P → A→ N with P ∈ P and N ∈ N is uniquely determined up to
isomorphism and depends functorially on A. In particular, its entries define functors P :T→ P

and N :T→N.
2.9.3. The functors P, N :T→ T are triangulated.
2.9.4. The localisations T/N and T/P exist.
2.9.5. The compositions P → T → T/N and N → T → T/P are equivalences of triangulated

categories.
2.9.6. The functors P, N :T→ T descend to triangulated functors P :T/N→ P and N :T/P→N,

respectively, that are inverse (up to isomorphism) to the functors in 2.9.5.
2.9.7. The functors P :T/N → T and N :T/P → T are left and right adjoint to the localisation

functors T→ T/N and T→ T/P, respectively; that is, we have natural isomorphisms

T(P (A), B)�T/N(A, B), T(A, N(B))�T/P(A, B),

for all A, B ∈ T.
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Fig. 1. Exactness of P and N.

Proof. We can exchange the roles of P and N by passing to opposite categories. Hence it suffices to
prove the various assertions about one of them.

By hypothesis, N ∈ N implies T(P, N) = 0 for all P ∈ P. Conversely, suppose T(P, A) = 0 for
all P ∈ P. Let �N → P → A→ N be an exact triangle with P ∈ P and N ∈ N. The map P → A

vanishes by hypothesis. Lemma 2.2 implies N�A⊕�−1P . Since N is thick, A ∈N. This proves 2.9.1.
Let �N → P → A → N and �N ′ → P ′ → A′ → N ′ be exact triangles with P, P ′ ∈ P and

N, N ′ ∈ N and let f ∈ T(A, A′). Since T(P, N ′) = 0, the map P ′ → A′ induces an isomorphism
T(P, P ′)�T(P, A′). Hence there is a unique and hence natural way to lift the composite map P →
A→ A′ to a map P → P ′. By the axioms of a triangulated category, there exists a morphism of exact
triangles from �N → P → A→ N to �N ′ → P ′ → A′ → N ′ that extends f : A→ A′ and its lifting
P(f ): P → P ′. An argument as above shows that there is a unique way to lift f to a map N → N ′. Thus
the morphism of triangles that extends f is determined uniquely, so that the triangle �N → P → A→ N

depends functorially on A. This proves 2.9.2.
Next, we show that P is a triangulated functor on T. Let �B → C → A → B be an exact triangle.

Consider the solid arrows in the diagram in Fig. 1. We can find objects N ′(C) and P ′(C) of T and the
dotted arrows in this diagram so that all rows and columns are exact and such that the diagram commutes
except for the square marked with a −, which anti-commutes (see [8, Proposition 1.1.11]). Since P and
N are triangulated subcategories and the rows in this diagram are exact triangles, we get P ′(C) ∈ P

and N ′(C) ∈ N. Hence the column over C is as in the definition of the functors P and N. Therefore,
we can replace this column by the exact triangle �N(C) → P(C) → C → N(C). Our proof of 2.9.2
shows that the rows must be obtained by applying the functors P and N to the given exact triangle
�B → C → A→ B. Since the rows are exact triangles by construction, the functors P and N preserve
exact triangles. They evidently commute with suspensions. This proves 2.9.3

Next we construct a candidate T′ for the localisation T/N. We let T′ have the same objects as T and
morphisms T′(A, B) := T(P (A), P (B)). The identity map on objects and the map P on morphisms
define a canonical functor T→ T′. We define the suspension on T′ to be the same as for T. A triangle
in T′ is called exact if it is isomorphic to the image of an exact triangle in T. We claim that T′ with this
additional structure is a triangulated category and that the functorT→ T′ is the localisation functor atN.

The uniqueness of the exact triangle �N(A) → P(A) → A → N(A) yields that the natural map
P(A)→ A is an isomorphism for A ∈ P. Therefore, the map T(A, B)→ T′(A, B) is an isomorphism
for A, B ∈ P. That is, the restriction of the functor T→ T′ to P is fully faithful and identifies P with
a full subcategory of T′. Moreover, since P(A) ∈ P, the map P 2(A)→ P(A) is an isomorphism. This
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implies that the map P(A)→ A is mapped to an isomorphism in T′. Thus any object of T′ is isomorphic
to one in the full subcategory P. Therefore, the category T′ is equivalent to the subcategory P. Using
that P is a triangulated functor on T, one shows easily that both functors P → T′ and T′ → P map
exact triangles to exact triangles. They commute with suspensions anyway. Since they are equivalences
of categories and since P is a triangulated category, the category T′ is triangulated and the equivalence
P�T′ is compatible with the triangulated category structure.

We define the functor P :T′ → P to be P on objects and the identity on morphisms. This func-
tor is clearly inverse to the above equivalence P → T′ and has the property that the composition

T → T′ P→P ⊆ T agrees with P :T → T. Moreover, we have observed already above that
T(P (A), (B))�T(P (A), P (B)) for all A, B ∈ T. Hence all the remaining assertions follow once
we show that T′ has the universal property of T/N. It is easy to see that N is equal to the kernel
of T → T′. If F :T → T′′ is a triangulated functor with kernel N, then the maps P(A) → A in-

duce isomorphisms F(P (A))→ F(A) by Lemma 2.2. Therefore, T′ P→P ⊆ T
F→T′′ is the required

factorisation of F through T′. �

We call the map P(A)→ A an N-projective resolution or a P-simplicial approximation of A. The first
term comes from homological algebra, the second one from homotopy theory. We prefer the terminology
from homotopy theory because it gives a more accurate analogy for the Baum–Connes assembly map.

Finally, we consider the localisation of functors. Let F :T→ T′ be a covariant triangulated functor
to another triangulated category T′. Then its localisation or left derived functor LF :T/N→ T′ is, in
general, defined by a certain universal property. In the case of a complementary pair of subcategories, it is
given simply by LF�F ◦P . This makes sense for any functor F, triangulated or not. If F is triangulated,
then so is LF . If F is (co)homological, then so is LF . Both assertions follow from Proposition 2.9.3. In
the following discussion, we assume F to be triangulated or homological.

The functor LF descends to the category T/N and comes equipped with a natural transformation
LF → F which comes from the natural transformation P(A) → A. The universal property that char-
acterises LF is the following. If F ′:T/N → T′ is any functor together with a natural transformation
F ′ → F , then this natural transformation factorises uniquely through LF . This factorisation is obtained
as the composition

F ′(A)
�←F ′(P (A))→ F(P (A))�LF(A).

Thus we may view LF as the best approximation to F that factors through T/N. In particular, we have
LF�F if and only if N ⊆ ker F if and only if F maps N-weak equivalences to isomorphisms in T′.

Alternatively, we may view LF(A) as the best approximation to F(A) that uses only the restriction of
F to P. The simplicial approximation P(A)→ A has the universal property that any map B → A with
B ∈ P factors uniquely through P(A). In this sense, P(A) is the best possible approximation to A inside
P and F(P (A)) is the best guess we can make for F(A) if we want the guess to be of the form F(B) for
some B ∈ P.

We can also use the functor N :T/P→ T to define an obstruction functor Obs F := F ◦N . It comes
equipped with a natural transformation F → Obs F . Proposition 2.9.2 shows that if the functor F is
triangulated then LF , F and Obs F are related by a natural exact triangle

�Obs F(A)→ LF(A)→ F(A)→ Obs F(A).
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Thus Obs F(A) measures the lack of invertibility of the map LF(A)→ F(A). In particular, Obs F(A)=0
if and only if LF(A)�F(A). Similar remarks apply if F is homological. In that case, the functors LF , F
and Obs F are related by a long exact sequence.

3. Preliminaries on compact subgroups and some functors

We first recall some structural results about compact subgroups in locally compact groups. Then we
recall the well-known formal properties of tensor product, restriction and induction functors. We discuss
them in some detail because they are frequently used. We apply the universal property of KK-theory to
treat them. This has the advantage that proofs do not require the definition of KK.

3.1. Compact subgroups

Let G be a locally compact group. Let G0 ⊆ G be the connected component of the identity element.
We call G almost totally disconnected if G0 is compact, and almost connected if G/G0 is compact. If G is
almost totally disconnected, then G contains a compact open subgroup (and vice versa) by [21, Theorem
7.5]. Therefore, if G is arbitrary, then there exists an open almost connected subgroup U ⊆ G: take
the preimage of a compact open subgroup in G/G0. Almost connected groups are very closely related
to Lie groups (with finitely many connected components) by [35]: if U is almost connected, then each
neighbourhood of the identity element contains a compact normal subgroup N ⊆ U such that U/N is a
Lie group (the smooth structure on U/N is unique if it exists).

Let U be almost connected and let K ⊆ U be maximal compact. We recall some structural results
about U/K from [1]. Let k ⊆ u be the Lie algebras of K and U, respectively, and let p := u/k. This
quotient is a finite dimensional R-vector space, on which K acts linearly by conjugation. There exists a
K-equivariant homeomorphism U/K�p. Thus U/K as a K-space is homeomorphic to a linear action of
K on a real vector space. This fact is crucial for our purposes. Moreover, Abels shows in [1] that U/K is
a universal proper U-space. This contains the assertion that any compact subgroup of U is subconjugate
to K (because it fixes a point in U/K). Especially, any two maximal compact subgroups are conjugate.

We define some classes of special compact subgroups that we shall use later. Let H ⊆ G be a compact
subgroup. We call H strongly smooth if its normaliser NGH ⊆ G is open in G and NGH/H is a Lie
group. We call H smooth if it contains a strongly smooth subgroup of G. Finally, we call H large if it is a
maximal compact subgroup of some open almost connected subgroup of G. We let LC= LC(G) be the
set of large compact subgroups of G.

Of course, strongly smooth subgroups are smooth. Large subgroups are also smooth because if L ⊆ U

is maximal compact and N ⊆ U is a smooth, compact normal subgroup, then NL is a compact subgroup
as well by normality. Hence N ⊆ L by maximality.

Lemma 3.1. Any compact subgroup of G is contained in a large compact subgroup.
If H ⊆ G is a large compact subgroup, then the open almost connected subgroup U ⊆ G in which H

is maximal is unique and denoted by UH .
Suppose H, L ∈ LC satisfy H ⊆ L. Then H = UH ∩ L, so that H is open in L. The natural map

UH/H → UL/L is a homeomorphism.
If H ⊆ G is smooth, then the homogeneous space G/H is a smooth manifold in a canonical way.
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Proof. We claim that any compact subgroup H of a totally disconnected group G is contained in a compact
open one. Let U ⊆ G be any compact open subgroup. Then H ∩ U has finite index in H. Therefore,
U ′ := ⋂

h∈HhUh−1 is again a compact open subgroup of G. By construction, it is normalised by H, so
that HU ′ is again a subgroup. It is compact and open and contains H. Since HU ′ is almost connected, H
is contained in some maximal compact subgroup of HU ′. This yields the first assertion.

Suppose H is maximal compact in the open almost connected subgroups U and V of G. We claim that
U = V . Since H is still maximal compact in U ∩ V , we may assume that U ⊆ V . Hence V/H is a
disjoint union of U : V copies of U/H . However, V/H is homeomorphic to a vector space and therefore
connected, forcing U = V . Let H and L be large compact subgroups of G that satisfy H ⊆ L. Then
H ⊆ UH ∩ L ⊆ UH , so that H = UH ∩ L by maximality. Hence the natural map UH/H → UL/L is
injective. Its image is both open and closed and hence must be all of UL/L by connectedness.

Let H ⊆ G be smooth. Then we can find an almost connected open subgroup U ⊆ G that contains H
and a subgroup N ⊆ H that is normal in U such that U/N is a Lie group. Write G/N as a disjoint union
of copies of the Lie group U/N . This reveals that G/H is a disjoint union of copies of the homogeneous
space (U/N)/(H/N) and hence a smooth manifold in a canonical way. �

3.2. Functors on Kasparov categories

The (minimal) C∗-tensor product gives rise to bifunctors

KKG�X × KKG→ KKG�X, (A, B) 
→ A⊗ B,

KKG�X × KKG�X → KKG�X, (A, B) 
→ A⊗XB,

see [28, Definition 2.12, Proposition 2.21]. We briefly recall how A⊗XB looks like. If A, B ∈ KKG�X,
then A⊗ B is a G�(X ×X)-C∗-algebra, and A⊗XB is defined as its “restriction” to the diagonal. That
is, we divide out elements of the form f · a with f ∈ C0(X×X), f (x, x)= 0 for all x ∈ X, a ∈ A⊗XB.
See also [28, Definition 1.6].

The full and reduced descent functors KKG�X → KK are defined in [28, pp. 170–173]. On objects,
they act by A 
→ (G�X)�A and A 
→ (G�X)�rA. We remark that the space X has no effect here, that
is, (G�X)�A=G�A and (G�X)�rA=G�rA (see also [15]).

Let H ⊆ G be a closed subgroup. Then we have functors

ResH
G : KKG�X → KKH�X,

IndG
H : KKH�X → KKG�X,

called restriction and induction, respectively. The restriction functor is a special case of the functoriality
of KKG�X in G: any group homomorphism H → G induces a functor KKG�X → KKH�X by [28,
Definition 3.1]. The induction functor is introduced in [28, Section 3.6], see also [11].

Finally, a G-equivariant continuous map f : X→ Y induces functors

f∗: KKG�X → KKG�Y ,

f ∗: KKG�Y → KKG�X.

The functor f∗ is just a forgetful functor: to view a G�X-C∗-algebra A as a G�Y -C∗-algebra, compose
f ∗: C0(Y )→ Cb(X) and the canonical extension of the structural homomorphism Cb(X)→ ZM(A).
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The functor f ∗ is defined on objects by f ∗(A) := C0(X)⊗Y A. Clearly, id∗�id, id∗�id and f∗g∗�(fg)∗,
g∗f ∗�(fg)∗ if f and g are composable.

Nowadays, we can treat these functors much more easily than in [28] using the universal property of
Kasparov theory. In the non-equivariant case, Nigel Higson has shown that the functor from C∗-algebras
to KK is the universal split exact stable homotopy functor, that is, any functor from C∗-algebras to some
category with these properties factors uniquely through KK. This result has been extended by Klaus
Thomsen to the equivariant case and also works G�X-equivariantly by [34]. The above functors on
KK-categories all come from functors F between categories of C∗-algebras, which are much easier to
describe.

Let F be a functor from G�X-C∗-algebras to H�Y -C∗-algebras. The relevant functors F satisfy
F(A ⊗ B) ≈ F(A) ⊗ B for any nuclear C∗-algebra B equipped with the trivial representation of G
(recall that≈ denotes isomorphism of G�X-C∗-algebras). This implies immediately that F is stable and
homotopy invariant and commutes with suspensions. Suppose, in addition, that F maps extensions with
a completely positive, contractive, G-equivariant linear section again to such extensions. This is the case
in the above examples. By the universal property, F induces a functor KKG�X → KKH�Y . Our mild
exactness hypothesis guarantees that F maps mapping cone triangles again to mapping cone triangles.
This suffices to conclude that we have got a triangulated functor. This argument provides a very quick
existence proof for the functors above and also shows that they are triangulated. It is also easy to check
that they commute with countable direct sums on KKG�X (recall that direct sums in KKG�X are just
C∗-direct sums).

Green’s Imprimitivity Theorem and its reduced version assert that

G�IndG
H(A)∼MH�A, G�rIndG

H(A)∼MH�rA. (9)

The functors f∗ and f ∗ are compatible with⊗ (without X) in the evident sense: f∗(A⊗B)�f∗(A)⊗B,
f ∗(A⊗ B)�f ∗(A)⊗ B. We have a natural G�Y -equivariant isomorphism

f∗(A)⊗Y B ≈ f∗(A⊗Xf ∗(B)) (10)

for f : X→ Y and A ∈ KKG�X, B ∈ KKG�Y because⊗X is associative and A⊗XC0(X) ≈ A. Eq. (10)
asserts for the constant map pX: X→ � that

A⊗Xp∗X(B) ≈ A⊗ B. (11)

The isomorphisms in (10) and (11) are natural, even in the formal sense. For (11), naturality means that
the isomorphisms intertwine

x⊗Xp∗X(y) ∈ KKG(A⊗Xp∗XB, A′⊗Xp∗XB ′) and x ⊗ y ∈ KKG(A⊗ B, A′ ⊗ B ′)

if x ∈ KKG(A, A′), y ∈ KKG(B, B ′). By the universal property of KK, it suffices to verify this in the
(easy) special case where x and y are ordinary ∗-homomorphisms; the general case then follows because
two functors agree on KK once they agree for ordinary ∗-homomorphisms. All the isomorphisms that
follow are also natural in this sense, for the same reason.

There are obvious compatibility conditions

ResH
G(A⊗(X)B) ≈ ResH

G(A)⊗(X)ResH
G(B), (12)
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where we write ⊗(X) for either ⊗X or ⊗, and

IndG
H ◦ f∗ ≈ f∗ ◦ IndG

H , ResH
G ◦ f∗ ≈ f∗ ◦ ResH

G, ResH
G ◦ f ∗ ≈ f ∗ ◦ ResH

G , (13)

because in each case one of the functors is a forgetful functor. The relation IndG
H ◦ f ∗ ≈ f ∗ ◦ IndG

H

also holds. The easiest way to prove this isomorphism and many others is to replace IndG
H by a forgetful

functor as follows.
The groupoid G�(G/H × X) is Morita equivalent to H�X. Therefore, the categories of H�X-C∗-

algebras and of G�(G/H ×X)-C∗-algebras are equivalent. We may view induction as a functor between
these two categories. This is an equivalence of categories. Its inverse simply restricts a G�(G/H×X)-C∗-
algebra to {H }×X ⊆ G/H ×X. By the universal property of KK, these functors induce an equivalence
of categories KKG�(G/H×X)�KKH�X (see also [32]).

Let 
X: G/H × X → X be the projection. When we reinterpret IndG
H and ResH

G as functors between
KKG�X and KKG�(G/H×X), we get

IndG
H ≈ 
X,∗, ResH

G ≈ 
∗X. (14)

This is useful for understanding the formal properties of these functors. Using the properties of f∗ and
f ∗ shown above we get

IndG
H ◦ f ∗ ≈ f ∗ ◦ IndG

H , (15)

(IndG
HA)⊗(X)B ≈ IndG

H(A⊗(X)ResH
GB) (16)

IndG
H ◦ ResH

G(A) ≈ C0(G/H)⊗ A. (17)

Our next goal is to prove the adjointness relation

KKG�X(f ∗(A), B)�KKG�Y (A, f∗(B)) (18)

for a proper continuous G-map f : X→ Y , A ∈ KKG�Y , B ∈ KKG�X. Experts on KK-theory can verify
(18) easily by showing that both sides are defined by equivalent classes of cycles. Category theorists may
prefer the following argument, which requires no knowledge of KK except the existence of f∗ and f ∗ as
functors on KK. Let f : X→ Y be a continuous G-map. Let B be a G�X-C∗-algebra. There is a natural
homomorphism


B : f ∗f∗(B)�C0(X)⊗Y B → C0(X)⊗XB�B.

Let A be a G�Y -C∗-algebra. We have a natural map �A from A to the multiplier algebra of f ∗(A) =
f∗f ∗(A), which sends a 
→ 1⊗ a ∈ Cb(X)⊗Y A or, equivalently, h · a 
→ h⊗Y a for h ∈ C0(Y ), a ∈ A.
The second description shows that we have a map �A: A→ f∗f ∗(A) if f is proper. The composite maps

f ∗(A)
f ∗(�A)−→ f ∗(f∗f ∗(A))= f ∗f∗(f ∗A)


f ∗(A)−→ f ∗A,

f∗(B)
�f∗B−→ f∗f ∗(f∗B)= f∗(f ∗f∗B)

f∗(
B)−→ f∗(B)

are the identity. Thus the maps 
B and �A form (co)units of adjunction between the functors f ∗ and f∗
(see [33] for this notion). This holds regardless of whether we use homomorphism or KK-morphisms.
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Thus we get the desired adjointness relation (18) and a corresponding statement about equivariant ∗-
homomorphisms.

Combining (18) with (14), we get a Frobenius reciprocity isomorphism

KKG�X(A, IndG
HB)�KKH�X(ResH

GA, B) (19)

if H ⊆ G is a cocompact closed subgroup and A ∈ KKG�X, B ∈ KKH�X. Dually, there is a natural
isomorphism

KKG�X(IndG
UA, B)�KKU�X(A, ResU

GB) (20)

for an open subgroup U ⊆ G. This can also be proven by writing down explicitly the units of adjunction.
We can decompose ResU

GIndG
U(A) as a direct sum of U�X-C∗-algebras over the discrete space of double

cosets G//U . The summand for the identity coset can be identified with A, so that we get a natural map
�A: A→ ResU

GIndG
U(A). We can represent C0(G/U) on the Hilbert space �2(G/U) by multiplication op-

erators. Since U is open in G, this maps C0(G/U) into the C∗-algebra of compact operators K(�2(G/U)).
Hence we get a natural morphism

IndG
U ResU

G(B) ≈ C0(G/U)⊗ B → K(�2(G/U))⊗ B∼MB

for B ∈ KKG�X. This defines an element 
B ∈ KKG�X(IndG
U ResU

G(B), B) because KK is stable. One
verifies easily that the morphisms 
B and �A are units of adjunction, so that we get (20).

After these purely formal manipulations of functors, we now come to a much deeper assertion, which
is due to Gennadi Kasparov.

Proposition 3.2 (Kasparov [28, Theorem 5.8]). Let G be almost connected and let H ⊆ G be a maximal
compact subgroup. If one of X, A and B is a proper G-space or a proper G-C∗-algebra, then

ResH
G : KKG�X(A, B)→ KKH�X(ResH

GA, ResH
GB) (21)

is an isomorphism.

Lemma 3.3. Let H ⊆ G be a large compact subgroup and let U := UH . There is a natural isomorphism

KKG�X(IndG
HA, B)�KKH�X(ResH

U IndU
HA, ResH

GB). (22)

Define JG
H (A) := IndG

H(C0((U/H)7)⊗ A). Then there is a natural isomorphism

KKG�X(JG
H A, B)�KKH�X(A, ResH

GB)

if A belongs to the essential range of the functor ResH
U . Furthermore, the functors

ResH
U : KKU�X → KKH�X, ResH

U IndU
H : KKH�X → KKH�X,

have the same essential range.

The essential range of a functor F :C→ C′ is defined as the class of all objects ofC′ that are isomorphic
to an object of the form F(X) with X an object of C.
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Proof. Induction in stages and (20) yield

KKG�X(IndG
HA, B)�KKU�X(IndU

HA, ResU
GB).

Since IndU
HA is proper, Proposition 3.2 yields (22). Let us abbreviate R := ResH

U and I := IndU
H .

If A belongs to the essential range of R, then RI(A)�C0(U/H) ⊗ A by (17). Recall that U/H is H-
equivariantly diffeomorphic to a real vector space with a linear action of H. Hence Bott periodicity provides
a KKH -equivalence between (RI)8(A)�C0((U/H)8)⊗ A and A. This yields the second isomorphism
and shows that the essential range of R is contained in the essential range of RI . The converse inclusion
is trivial. �

Hence IndG
H and ResH

G for a large compact subgroup H ⊆ G become adjoint functors if we replace
KKH�X by the essential range of ResH

U . There is no analogue of this for arbitrary compact subgroups.

4. A decomposition of the Kasparov category

Definition 4.1. We call A ∈ KKG�X weakly contractible if ResH
G(A)�0 for all compact subgroups

H ⊆ G. Let CC ⊆ KKG�X be the full subcategory of weakly contractible objects.
A morphism f in KKG�X(A, B) is called a weak equivalence if ResH

G(f ) is invertible in KKH�X for
all compact subgroups H ⊆ G. We say that f vanishes for compact subgroups if ResH

G(f ) = 0 for all
compact subgroups H ⊆ G.

We call a G�X-C∗-algebra compactly induced if it is isomorphic in KKG�X to IndG
H(A) for some

compact subgroup H ⊆ G and some A ∈ KKH�X. We let CI ⊆ KKG�X be the full subcategory of
compactly induced objects.

In all these definitions, it suffices to consider large compact subgroups because any compact subgroup
is contained in a large one by Lemma 3.1. Our next goal is to prove that (〈CI〉,CC) is a complementary
pair of localising subcategories of KKG�X, so that we can apply Proposition 2.9.

Lemma 4.2. The subcategories CC and 〈CI〉 of KKG�X are localising.
The subcategories CC, CI and 〈CI〉 are closed under tensor products with arbitrary objects of KKG

and KKG�X.

Proof. Since the functor ResH
G is triangulated and commutes with direct sums, its kernel is localising.

HenceCC is localising as an intersection of localising subcategories. The subcategory 〈CI〉 is localising by
construction. The subcategories CC and CI are closed under tensor products because of the compatibility
of restriction and induction with tensor products discussed in Section 3. Since the functor ��⊗(X)B is
triangulated and commutes with direct sums, it leaves 〈CI〉 invariant as well. �

Lemma 4.3. A morphism in KKG�X is a weak equivalence if and only if its mapping cone is weakly
contractible.

Proof. Since the functor ResH
G is triangulated, it maps an exact triangle �B → C → A

f→B again to an
exact triangle. Lemma 2.2 implies that ResH

Gf is invertible if and only if ResH
GC�0. �
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Proposition 4.4. An object N of KKG�X is weakly contractible if and only if KKG�X(P, N)�0 for all
P ∈ CI.

A morphism f ∈ KKG�X(A, B) is a weak equivalence if and only if it induces an isomorphism
f∗: KKG�X(P, A)→ KKG�X(P, B) for all P ∈ CI.

A morphism f ∈ KKG�X(A, B) vanishes for compact subgroups if and only if it induces the zero map
f∗: KKG�X(P, A)→ KKG�X(P, B) for all P ∈ CI.

In the first two assertions, we can replace CI by 〈CI〉.
Proof. Let H ∈ LC be maximal compact and let U := UH . Let P = IndG

HA for some A ∈ KKH�X.
Any object of CI is of this form for some H, A by Lemma 3.1. We use (22) to rewrite KKG�X(P, N)�
KKH�X(A′, ResH

GN) with A′ := ResH
U IndU

HA. If ResH
GN�0, then the right hand side vanishes, so that

KKG�X(P, N)=0. Conversely, if KKG�X(P, N)=0 for all P ∈ CI, then KKH�X(ResH
GN, ResH

GN)=0
and hence ResH

GN=0. We have used that ResH
GN belongs to the essential range of ResH

U IndU
H by Lemma

3.3. This proves the first assertion. We can enlarge CI to 〈CI〉 because the class of objects P with
KKG�X(P, N)= 0 for all N ∈ CC is localising. The remaining assertions are proven similarly. �

Definition 4.5. A CI-simplicial approximation of A ∈ KKG�X is a weak equivalence Ã → A with
Ã ∈ 〈CI〉. A CI-simplicial approximation of C0(X) is also called a Dirac morphism for G�X.

Proposition 4.6. A Dirac morphism exists for any G�X.

The existence of a Dirac morphism is the main technical result needed for our approach to the
Baum–Connes conjecture. Logically, we should now prove the existence of the Dirac morphism (we
postpone this until Section 6) and then compute the localisation KKG�X/CC (we do this in Section 7)
before we dare to localise the functor K∗(G�r��). Instead, we head for the Baum–Connes assembly map
as quickly as possible.

The following theorem uses the notation of Proposition 2.9.

Theorem 4.7. The localising subcategories 〈CI〉,CC of KKG�X are complementary. Let D ∈ KKG�X

(P, C0(X)) be a Dirac morphism for G�X and form the exact triangle

�N→ P
D→C0(X)→ N. (23)

Then P(A)�P⊗XA and N(A)�N⊗XA naturally for all A ∈ KKG�X, and the natural transformations
�N(A) → P(A) → A → N(A) are induced by the maps in (23). We have A ∈ 〈CI〉 if and only if
KKG�X(A, B)=0 for all B ∈ CC if and only if P⊗XA�A; and B ∈ CC if and only if KKG�X(A, B)=0
for all A ∈ 〈CI〉 if and only if P⊗XB�0. In particular, P⊗XP�P.

Proof. Since D is a weak equivalence, N is weakly contractible by Lemma 4.3. The tensor product of (23)
with A is another exact triangle because ��⊗XA is a triangulated functor. Since CC and 〈CI〉 are closed
under tensor products by Lemma 4.2, we get an exact triangle as in the definition of a complementary
pair of subcategories in Section 2.6. This yields the assertions in the first paragraph. Those in the second
paragraph follow from Proposition 2.9. �

Definition 4.8. An exact triangle as in (23) is called a Dirac triangle.
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Using Proposition 2.9.7, we can now compute localisations and obstruction functors from a Dirac
triangle. The morphisms in KKG/CC are given by

KKG�X/CC(A, B)�KKG�X(P⊗XA, B).

The localisation and the obstruction functor of a functor F : KKG�X → C are

LF(A)�F(P⊗XA), Obs F(A)�F(N⊗XA),

and the natural transformations LF(A)→ F(A)→ Obs F(A) are induced by the maps P→ �→ N in
the Dirac triangle.

We are particularly interested in the functor

KKG�X → KK, A 
→ (G�X)�rA.

We denote its localisation and obstruction functor by A 
→ (G�X)�L
r A and A 
→ (G�rX)�Obs

r A,
respectively.

5. The Baum–Connes assembly map

We now relate our analysis of KKG�X to the Baum–Connes assembly map. Since we consider trans-
formation groups G�X, we first have to do some work related to the space X. Chabert, Echterhoff and
Oyono-Oyono show in [15] that there is a commutative diagram

That is, the Baum–Connes assembly map just ignores the space X. We need a similar result in our setup.

Lemma 5.1. The functor p∗X: KKG → KKG�X maps CC,CI, 〈CI〉 ⊆ KKG to the corresponding
subcategories in KKG�X. If f ∈ KKG(A, B) is a weak equivalence or vanishes for compact subgroups,
so does p∗X(f ). If D ∈ KKG(P, �) is a Dirac morphism for G, then p∗X(D) ∈ KKG�X(C0(X, P), C0(X))

is a Dirac morphism for G�X. There are natural isomorphisms

(G�X)�L
r A�G�

L
r A, (G�X)�Obs

r A�G�
Obs
r A.

Proof. Recall from Section 3 that the functor p∗X is compatible with restriction and induction. This
implies p∗X(CC) ⊆ CC and p∗X(CI) ⊆ CI. The same holds for 〈CI〉 because p∗X is triangulated and
commutes with direct sums. This implies the assertions about weak equivalences and Dirac morphisms.
Now (11) yields

(G�X)�L
r A�(G�X)�r(p

∗
X(P)⊗XA) ≈ G�r(P⊗ A)�G�

L
r A.

For the same reason, (G�X)�Obs
r A�G�

Obs
r A. �
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For our purposes, we do not need the details of the standard definition of the Baum–Connes conjecture.
We only need to know the following two facts: the Baum–Connes conjecture holds for compactly induced
coefficient algebras (see [11]), and weak equivalences induce isomorphisms on Ktop∗ (G, ��) (see [16]).
This second assertion also follows immediately from the definition of Ktop∗ and Corollary 7.2 below. Thus
the only substantial result about the standard definition of the Baum–Connes conjecture that we have to
import is that it holds for compactly induced coefficient algebras.

Theorem 5.2. Let Ã→ A be a CI-simplicial approximation of A ∈ KKG�X. Then the indicated maps
in the commutative diagram

are isomorphisms. Hence the Baum–Connes assembly map is naturally isomorphic to the canonical map
K∗((G�X)�L

r A)→ K∗((G�X)�rA). It is an isomorphism if and only if K∗((G�X)�Obs
r A)�0.

Proof. Lemma 5.1 shows that we may assume without loss of generality that X = �. The left vertical
map is the assembly map for the coefficient algebra Ã. Since Ktop∗ (G, ��) is a homological functor
that commutes with direct sums, the class of coefficient algebras B for which �B is an isomorphism is a
localising subcategory of KKG. Therefore, the Baum–Connes conjecture holds for all coefficient algebras
in 〈CI〉 because it holds for compactly induced coefficient algebras by [11]. As a result, the left vertical
map in our diagram is an isomorphism. It is shown in [16] that weak equivalences induce isomorphisms
on Ktop∗ (G, ��). Hence the top horizontal map is an isomorphism as well. �

Therefore, it is legitimate to view the map LF(A)→ F(A) for a covariant functor F defined on KKG

as an assembly map for F(A).
As we explained in Section 2.6, there are two pictures of LF(A): either as the best possible approxima-

tion to F(A) that vanishes on CC or as the best possible approximation to F(A) that only uses the values
F(B) for B ∈ 〈CI〉. In particular, the map LF(A)→ F(A) is an isomorphism for all A ∈ KKG�X if and
only if F |CC = 0. As we remarked in the introduction, this yields an equivalent, elementary formulation
of the Baum–Connes conjecture when applied to K∗(G�rA).

Alain Connes has asked recently whether it is possible to improve upon the Baum–Connes conjec-
ture, finding better approximations to K∗(G�rA). Like the approaches in [3–5,18], our construction of
the assembly map is sufficiently flexible to say something about this, though our answer may not be
very satisfactory. The Baum–Connes conjecture asserts that the objects of 〈CI〉 are general enough to
predict everything that happens in the K-theory of reduced crossed products. If it fails, this means that
there are some phenomena in K∗(G�rA) that do not yet occur for A ∈ 〈CI〉. To get a better con-
jecture, we have to add some of the coefficient algebras for which Baum–Connes fails to CI. Then
the general machinery of localisation yields again a best possible approximation to K∗(G�rA) based
on what happens for coefficients in 〈CI′〉. The new conjecture expresses K∗(G�rA) for arbitrary A
in terms of K∗(G�rA) for A ∈ CI′. However, such a reduction of the problem is only as good as
our understanding of what happens for A ∈ CI′. At the moment, it does not seem that we have a



236 R. Meyer, R. Nest / Topology 45 (2006) 209–259

sufficient understanding of the failure of the Baum–Connes conjecture to make any progress in this
direction.

6. The Brown Representability Theorem and the Dirac morphism

Recall that a morphism D ∈ KKG(P, �) is a weak equivalence if and only if the induced map
KKG(A, P) → KKG(A, �) is an isomorphism for all A ∈ 〈CI〉. Since P is supposed to lie in the
same subcategory 〈CI〉, the Dirac morphism exists if and only if the functorA 
→ KKG(A, �) on the
category 〈CI〉 is representable. In the classical case of simplicial approximation of arbitrary topological
spaces by simplicial complexes, one can either write down explicitly such a representing object or appeal
to the Brown Representability Theorem. We shall prove the existence of the Dirac morphism using the
second method.

There are several representability theorems for triangulated categories that use different hypotheses. It
seems that none of them applies directly to the category 〈CI〉 that we need. To circumvent this, we choose
a smaller set of generators CI0 ⊆ CI which is small enough so that a general representability theorem
is available in 〈CI0〉 and large enough so that the representing object in 〈CI0〉 actually represents the
functor on the whole of 〈CI〉. A byproduct of this proof technique is that we get P ∈ 〈CI0〉. This is used
in Section 9.

Since KKG only has countable direct sums, we have to do some cardinality bookkeeping. Let T be a
triangulated category and let ℵ be an infinite regular cardinal number. We will only need the countable
cardinal number ℵ0. We suppose that T has direct sums of cardinality ℵ.

Recall that Ab denotes the category of Abelian groups. A contravariant functor F :T→ Ab is called
representable if it is isomorphic to X 
→ T(X, Y ) for some Y ∈ T. Representable functors are cohomo-
logical and compatible with direct sums of cardinality ℵ. We now formulate conditions on T that ensure
that these necessary conditions plus an extra cardinality hypothesis are also sufficient.

An object X ∈ T is called ℵ-compact if T(X, Y ) has cardinality at most ℵ for all Y ∈ T and the
covariant functor T(X, ��) is compatible with direct sums of cardinality ℵ. The reader who consults [38]
on direct sums and representability should beware that our notation differs slightly. The axiom (TR5ℵ)
and the notion of ℵ-compactness in [38] deal with direct sums of cardinality strictly less than ℵ.

Theorem 6.1. Let ℵ be an infinite regular cardinal number and let T be a triangulated category with
direct sums of cardinalityℵ. LetG be a set ofℵ-compact objects ofTwith |G|�ℵ. Suppose thatT(X, Y )=
0 for all X ∈ G already implies Y = 0. Let F :T→ Ab be an additive, contravariant functor.

Then F is representable if and only if it satisfies the following conditions:

(i) F is cohomological;
(ii) F is compatible with ℵ-direct sums;

(iii) F(C) has cardinality at most ℵ for all C ∈ G.

Moreover, the hypothesis that T(X, Y )=0 for all X ∈ G implies Y =0 can be replaced by the hypothesis
that T= 〈G〉ℵ.

Proof. Conditions (i)–(iii) are clearly necessary. The interesting assertion is that they are also sufficient.
If we leave out the cardinality restriction ℵ, this is proven by Neeman in [37], and it also follows from
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[38, Theorem 8.3.3]. Since we do not have direct sums of arbitrary cardinality in T, we have to check
that the proof does not require direct sums of cardinality strictly greater than ℵ. This is indeed the case, as
the determined reader may check for himself. It turns out that the largest sums we need have cardinality
at most N× ℵ× ℵ. This is dominated by ℵ because ℵ is a regular cardinal. �

6.1. Construction of Dirac morphisms

Now we introduce a subcategory of 〈CI〉 with a hand-selected set of generators CI0. Let H ∈ LC
and let U := UH as in Lemma 3.1. We define JG

H as in Lemma 3.3 and let

RH := JG
H (�)= IndG

HC0((U/H)7)�C0(G×H(U/H)7). (24)

This compactly induced G-C∗-algebra satisfies

KKG(RH , B)�KKH(�, B)�K(H�B). (25)

by Lemma 3.3. Eq. (25) says that RH (co)represents the covariant functor K(H���) and thus determines
RH uniquely up to KKG-equivalence. Eq. (24) merely is a convenient choice of representing object. For
an arbitrary compact subgroup, the functor K(H���) may fail to be representable. This is why we work
with large compact subgroups.

If H, H ′ ⊆ U are two maximal compact subgroups, they are conjugate in U by Lemma 3.1, so that the
G-C∗-algebras RH and RH ′ are isomorphic. Hence it suffices to choose one maximal compact subgroup
in each almost connected open subgroup. We let CI0 be the set of RH for the chosen subgroups H.

Lemma 6.2. The set CI0 is (at most) countable and consists of ℵ0-compact objects of KKG, where ℵ0
denotes the countable cardinal.

Proof. It is well-known that K∗(A) is countable if A is a separable C∗-algebra and that K-theory for
C∗-algebras commutes with direct sums [9]. Hence (25) implies that KKG(RH , B) is countable for each
B ∈ KKG and that KKG(RH , ��) commutes with countable direct sums. That is, CI0 consists of ℵ0-
compact objects. Since the objects of CI0 are in bijection with the almost connected open subgroups
of G, it remains to prove that there are at most countably many such subgroups. Let G0 ⊆ G be the
connected component of the identity element. The open almost connected subgroups of G are in bijection
with the compact open subgroups of G/G0. Since the latter group is second countable as a topological
space, even the set of all compact open subsets of G/G0 is countable. �

Corollary 6.3. For any B ∈ KKG, there is B̃ ∈ 〈CI0〉and f ∈ KKG(B̃, B) such that f∗: KKG(A, B̃)→
KKG(A, B) is an isomorphism for all A ∈ 〈CI0〉.
Proof. Lemma 6.2 implies that the category 〈CI0〉 with generating set CI0 satisfies the conditions
of Theorem 6.1. The functor F(A) := KKG(A, B) fulfils the necessary and sufficient conditions for
representability because it is already represented on the larger category KKG. Hence it is representable
on 〈CI0〉. �

We can now prove the existence of the Dirac morphism.
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Proof of Proposition 4.6. We may assume X = � by Lemma 5.1. Corollary 6.3 for B = � yields D ∈
KKG(P, �) with P ∈ 〈CI0〉 ⊆ 〈CI〉. We claim that D is a weak equivalence. Any compact subgroup
H ⊆ G is subconjugate to a subgroup L ⊆ G with RL ∈ CI0 by Lemma 3.1. Hence it suffices to prove that
ResL

G(D) is invertible for those L. By construction of D, it induces an isomorphism on KKG∗ (RL, ��). Eq.
(25) yields that D induces an isomorphism KKL(�, P)→ KKL(�, �). To check that D is an isomorphism
in KKL, it suffices to check that D induces an isomorphism KKL(P, P) → KKL(P, �) as well. Since
P ∈ 〈CI0〉, this follows if we have isomorphisms KKL∗ (A, P)�KKL∗ (A, �) for all A ∈ CI0. Thus we
have to fix another large compact subgroup H and show that D induces an isomorphism KKL∗ (RH , P)→
KKL∗ (RH , �).

Let V := U/H , then we have RH = C0(G×HV 7)�C0(G×UV 8). We only need the action of L
on this space. The space G×UV 8 decomposes into a disjoint union of the spaces LgU×UV 8 over the
double cosets g ∈ L\G/U . We have a natural isomorphism LgU×UV 8�L×L∩gUg−1V 8, where we use

the conjugation automorphism gUg−1�U to let gUg−1 act on V. Since the action of L ∩ gUg−1 on
V is diffeomorphic to a linear action, equivariant Bott periodicity yields that C0(LgU×UV 8) is KKL-
equivalent to IndL

L∩gUg−1(�). Thus

ResL
GRH �

⊕
g∈L\G/U

IndL

L∩gUg−1(�)

The subgroups L ∩ gUg−1 are open in L and again large by Lemma 3.1. It follows from (20) that

KKL∗ (RH , B)�
⊕

g∈L\G/U

KKL∗ (IndL

L∩gUg−1(�), B)

�
⊕

g∈L\G/U

KKL∩gUg−1

∗ (�, B)�
⊕

g∈L\G/U

KKG∗ (RL∩gUg−1, B).

By construction, D induces an isomorphism on the right hand side and hence on KKL∗ (RH , ��). �

Remark 6.4. Incidentally, the proof above shows that

JG
L ResL

GJG
H (�)= JG

L ResL
G(RH)�

⊕
g∈L\G/U

RL∩gUg−1 .

6.2. A localisation related to the Universal Coefficient Theorem

Definition 6.5. A C∗-algebra A is called K-contractible if K∗(A) = 0. A morphism f ∈ KK(A, B) is
called a K-equivalence if f∗: K∗(A)→ K∗(B) vanishes.

We write N ⊆ KK for the full subcategory of K-contractible objects. This subcategory is localising
because K-theory is a homological functor compatible with direct sums. A morphism is a K-equivalence
if and only if its mapping cone is K-contractible.

Theorem 6.6. The localising subcategories 〈�〉 and N in KK are complementary.
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Proof. We have B ∈N if and only if KK∗(�, B)�K∗(B)= 0 for all ∗ ∈ Z, if and only if KK(A, B)= 0
for all A ∈ 〈�〉. Similarly, f ∈ KK(B̃, B) is a K-equivalence if and only if f∗: KK(A, B̃)→ KK(A, B)

is an isomorphism for all A ∈ 〈�〉. We have to construct a K-equivalence B̃ → B with B̃ ∈ 〈�〉 for any
B ∈ KK. This is equivalent to the representability of the functor A 
→ KK(A, B) on 〈�〉. The object � of
KK is clearly compact and generates 〈�〉 by definition. Hence we can apply the Brown Representability
Theorem 6.1 to get the assertion. �

As we observed in Section 2.5, 〈�〉 ⊆ KK is just the bootstrap category. The simplicial approximations
in this context are usually called geometric resolutions (see [9]). Let UCT := KK/N be the localisation of
KK at the K-contractible objects. This is a triangulated category with countable direct sums and equipped
with a triangulated functor KK → UCT commuting with direct sums. It has the same objects as KK.
Morphisms are computed using geometric resolutions:

UCT(A, B)�KK(Ã, B)�KK(Ã, B̃).

The group UCT(A, B) can always be computed using the Universal Coefficient Theorem (see [9]) because
the latter applies to Ã ∈ 〈�〉. Moreover, A satisfies the Universal Coefficient Theorem if and only if
KK(A, B)�UCT(A, B) for all B if and only if A ∈ 〈�〉. Thus we have translated the Universal Coefficient
Theorem as an isomorphism statement. This is often convenient.

The functor A⊗ �� preserves K-equivalences for A ∈ 〈�〉 because this holds for the generator �. Hence
the natural maps from Ã⊗ B̃ to A⊗ B̃ and Ã⊗ B are both K-equivalences, so that the various ways of
localising A⊗B give the same result A⊗LB in the category UCT. Since A⊗LB only involves C∗-algebras
from the bootstrap category, K∗(A⊗LB) can always be computed by the Künneth Formula (see [9]). We
remark also that 〈�〉 ⊗ 〈�〉 ⊆ 〈�〉 because �⊗ �= �.

Thus localisation of KK at N yields a natural map KK∗(A, B) → UCT∗(A, B), which is an iso-
morphisms for all B if and only if A satisfies the Universal Coefficient Theorem, and a natural map
K∗(A⊗LB) → K∗(A ⊗ B), which is an isomorphism for all B if and only if A satisfies the Künneth
Formula. We want to emphasise that, on a formal level, these maps are analogous to the Baum–Connes
assembly map K∗(G�

L
r A)→ K∗(G�rA).

7. The derived category and proper actions

We want to describe the localisation of KKG�X at CC in more classical terms. Let A and B be G�X-
C∗-algebras. Let Y be a locally compact G-space. Generalising (2) slightly, we let

RKKG�X(Y ;A, B) := KKG�(X×Y )(C0(Y, A), C0(Y, B)).

We let RKKG�X(Y ) be the category with the same objects as KKG�X and with morphisms as above.
That is, RKKG�X(Y ) identifies with the range of the functor

p∗Y : KKG�X → KKG�(X×Y ) (26)

induced by the projection map X × Y → X and thus with a subcategory of KKG�(X×Y ). (There is no
reason to expect this subcategory to be triangulated.)
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Let f : Y → Y ′ be a continuous G-equivariant map. Since pY ′ ◦f=pY , the functor f ∗: KKG�(X×Y ′)→
KKG�(X×Y ) yields natural maps

f ∗: RKKG�X(Y ′;A, B)→ RKKG�X(Y ;A, B). (27)

For the constant map pY : Y → � this reproduces the functor p∗Y in (26). The maps in (27) turn Y 
→
RKKG�X(Y ;A, B) into a contravariant functor.

If S is a compact G-space, then (18) yields a natural isomorphism

RKKG�X(Y × S;A, B)�KKG�X(Y ;A, C(S, B)).

For S = [0, 1], we see that homotopy invariance of KKG(A, B) in the variable B implies homotopy
invariance in the variable Y; that is, f ∗1 =f ∗2 if f1, f2: Y → Y ′ are G-equivariantly homotopic. Let EG be
a second countable, locally compact universal proper G-space. Then X×EG is a universal proper G�X-
space. The category RKKG�X(EG) and the functor p∗EG: KKG�X → RKKG�X(EG) do not depend on
the choice of EG because EG is unique up to homotopy.

Theorem 7.1. The functor p∗EG: KKG�X → RKKG�X(EG) descends to an isomorphism of categories
KKG�X/CC�RKKG�X(EG).

More explicitly, let 
: Ã→ A be a CI-simplicial approximation of A ∈ KKG�X. Then the indicated
maps in the following commutative diagram are isomorphisms:

Proof. The first assertion follows from the second one and Proposition 2.9.7. Hence we only have to
prove that the two indicated maps are isomorphisms. Consider p∗EG first. Fix B. Both KKG�X(��, B) and
RKKG�X(EG; ��, B) are cohomological functors compatible with direct sums. Thus the class of objects
Ã for which the natural transformation p∗EG between them is an isomorphism is localising. Hence we
have an isomorphism for all Ã ∈ 〈CI〉 once we have an isomorphism for Ã ∈ CI. This is what we
shall prove. Thus we let Ã := IndG

HA′ for some large compact subgroup H and some A′ ∈ KKH�X. Let
U := UH and let Y be a G-space as above. We use Lemma 3.3 and the compatibility of IndG

H with p∗Y to
rewrite

RKKG�X(Y ; IndG
HA′, B)

= KKG�(X×Y )(IndG
Hp∗Y A′, p∗Y B)

�KKH�(X×Y )(p∗Y IndU
HA′, p∗Y B)= RKKH�X(Y ;ResH

U IndU
HA′, ResH

GB);

we have dropped restriction functors from the notation except in the final result. These isomorphisms are
natural and especially compatible with the functoriality inY. Since H is compact andEG is H-equivariantly
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contractible, homotopy invariance implies that p∗EG is an isomorphism

RKKH�X(�;ResH
U IndU

HA′, ResH
GB)

�→RKKH�X(EG;ResH
U IndU

HA′, ResH
GB).

Hence p∗EG: RKKG�X(�; IndG
HA′, B)→ RKKG�X(EG; IndG

HA′, B) is an isomorphism as well.
We claim that any weak equivalence 
: Ã→ A induces an isomorphism

RKKG�X(EG; Ã, B)�RKKG�X(EG;A, B).

The proof of this claim will finish the proof of the theorem. We remark that the usual definition of
Ktop∗ (G, A) is functorial for elements of RKKG(EG;A, A′) in a rather obvious way. Therefore, f ∈
KKG(A, A′) induces an isomorphism on Ktop∗ (G, A) once p∗EG(f ) is an isomorphism in RKKG(EG;
A, A′). Thus the claim above implies that weak equivalences induce isomorphisms on Ktop∗ (G, A). We
have already used this result of [16] in the proof of Theorem 5.2 above.

The claim is equivalent to RKKG�X(EG;A, B) = 0 for A ∈ CC by Lemma 4.3 because RKKG�X

(EG; ��, B) is a cohomological functor. This condition for all B is equivalent to p∗EG(A)= 0 for A ∈ CC,
that is, CC ⊆ ker p∗EG. Let S be the class of proper G-spaces Y for which CC ⊆ ker p∗Y . We shall use the
following trivial observation. If Y → Y ′ is a G-equivariant map and Y ′ ∈ S, then Y ∈ S as well because
p∗Y factors through p∗

Y ′ . Therefore, EG ∈ S if and only if Y ∈ S for all proper G-spaces Y. This is what
we are going to prove.

Let H ⊆ G be a compact subgroup and let Y ′ be a locally compact H-space. Then we can form a
G-space Y = G×HY ′. We call such G-spaces compactly induced. The groupoid G�(X × Y ) is Morita
equivalent to H�(X × Y ′). This yields an isomorphism

RKKG�X(G×HY ′;A, B)�RKKH�X(Y ′;ResH
GA, ResH

GB),

(see [28, Theorem 3.6]) and hence factors p∗Y through ResH
G . Thus Y ∈ S, that is,S contains all compactly

induced G-spaces.
Any locally compact proper G-space is locally compactly induced, that is, can be covered by open G-

invariant subsets that are isomorphic to compactly induced spaces. This result of Abels [2] is rediscovered
in [13]. It ought to imply our claim by a Mayer–Vietoris argument. However, the proof is somewhat delicate
because it is unclear whether RKKG�X(Y ;A, B) as a functor of Y is excisive.

We let Cn be the class of proper G-spaces that can be covered by at most n compactly induced, G-
invariant open subsets. Thus C1 consists of the compactly induced G-spaces. We prove Cn ⊆ S by
induction on n. We already know C1 ⊆ S. If Y ∈ Cn, then Y =Y0∪Y1 with open subsets Y0, Y1 such that
Y0 ∈ C1 and Y1 ∈ Cn−1. Hence Y0, Y1 ∈ S by induction hypothesis. Let Y∩ := Y0 ∩ Y1. Then Y∩ ∈ S

as well because Y∩ maps to Y0. The idea of the following proof is to replace Y by a homotopy push-out Z
of the diagram Y0 ← Y∩ → Y1. It is easy to see that Z ∈ S. Since there is a G-equivariant map Y → Z

this implies Y ∈ S.
In detail, let �0, �1 be a G-invariant partition of unity subordinate to the covering Y0, Y1. This can be

constructed by working in G\Y . Let

Z := (Y0 � Y1 � ([0, 1] × Y∩)) / ∼
where we identify Y∩ ⊆ Yj with {j} × Y∩ ⊆ [0, 1] × Y∩ for j = 0, 1. We define a map �∗: Y → Z by
�∗(y) := (�1(y), y) ∈ [0, 1] × Y∩ for y ∈ Y∩, �∗(y) := y ∈ Y0 for y ∈ Y0\Y∩ and �∗(y) := y ∈ Y1 for
y ∈ Y1\Y∩. Notice that this is a continuous, G-equivariant map. Thus Z ∈ S implies Y ∈ S.
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A cycle for RKKG�X(Z;A, A) is a triple (f0, f1, f∩), where fj is a cycle for RKKG�X(Yj ;A, A) for
j = 0, 1 and f∩ is a homotopy in RKKG�X(Y∩;A, A) between f0|Y∩ and f1|Y∩ . Fix any such cycle. The
cycles f0 and f1 are homotopic to 0 because Y0, Y1 ∈ S and A ∈ CC. This yields a homotopy between
(f0, f1, f∩) and (0, 0, f ′∩), where f ′∩ is some cycle for RKKG�X(Y∩ × [0, 1];A, A) whose restrictions
to 0 and 1 vanish. Thus f ′∩ is equivalent to a cycle for

RKKG�X×[0,1](Y∩;C([0, 1], A), �A)�RKKG�X(Y∩;A, �A).

Apply (18) to the coordinate projection X × Y∩ × [0, 1] → X × Y∩ to get this isomorphism. We have
RKKG�X(Y∩;A, �A)= 0 because Y∩ ∈ S. Thus f ′∩ is homotopic to 0 and RKKG�X(Z;A, A)= 0 for
all A ∈ CC, that is, Z ∈ S.

So far we have proven that Cn ⊆ S for all n ∈ N. Now let Y be an arbitrary proper G-space. Since
Y is locally compactly induced, there is a locally finite covering by compactly induced G-invariant open
subsets (Uj )j∈N. We let Yj =⋃j

k=0Uj and write Y =∪Yn. Thus Yn ∈ Cn ⊆ S for all n ∈ N. We use the
following variant of the mapping telescope (compare Section 2.4):

Z := {(y, t) ∈ Y × R+ | y ∈ Ym whenever t < m+ 1} =
⋃
m∈N

Ym × [m, m+ 1].

This is a closed G-invariant subset of Y × R+. There exists a partition of unity by G-invariant functions
subordinate to (Uj ) because G\Y is paracompact. We use this to construct a G-invariant function �: Y →
R+ with �(y)�m for all y ∈ Ym\Ym−1. We get an embedding Y → Z, y 
→ (y, �(y)). Thus Y ∈ S

follows if Z ∈ S. The proof of Z ∈ S is analogous to the argument in the preceding paragraph. Therefore,
we are rather brief.

A cycle for RKKG�X(Z;A, A) is equivalent to sequences of cycles (fm)m∈N for RKKG�X(Ym;A, A)

and homotopies (Hm)m∈N between fm and fm+1|Ym . The assumption that Ym ∈ S for all m allows us
to find a homotopy between fm and 0 for all m. Thus the cycle described by the data (fm, Hm)m∈N is
homotopic to a cycle (0, H ′m)m∈N. Each H ′m is equivalent to a cycle for RKKG�X(Ym;A, �A)�0 and
thus homotopic to 0. Hence RKKG�X(Z;A, A)= 0, that is, Z ∈ S. This finishes the proof. �

Corollary 7.2. An object of KKG�X is weakly contractible if and only if its image in KKG�(X×EG) is
isomorphic to 0, if and only if its image in KKG�(X×Y ) is isomorphic to 0 for all proper G-spaces Y. A
morphism in KKG�X is a weak equivalence if and only if its image in KKG�(X×EG) is invertible, if and
only if its image in KKG�(X×Y ) is invertible for all proper G-spaces Y.

Proof. By the universal property of EG the map Y → � for any proper G-space factors through EG.
Hence assertions about RKKG(EG) as in the statement of the corollary imply the corresponding assertions
about RKKG(Y ) for all proper G-spaces Y. An object is weakly contractible if and only if its image in the
localisation vanishes and a morphism is a weak equivalence if and only if its image in the localisation is
invertible. Thus everything follows from Theorem 7.1. �

Recall that a G�X-C∗-algebra is called proper if it is a G�(X × Y )-algebra for some proper G-
space Y.

Corollary 7.3. All proper G�X-C∗-algebras belong to 〈CI〉.
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Proof. Let A be a proper G�X-C∗-algebra. Then A is a G�(X × EG)-C∗-algebra. Let D: P→ C0(X)

be a Dirac morphism for G�X. Since D is a weak equivalence, p∗EG(D) is an invertible morphism in
KKG�(X×EG) by Corollary 7.2. Hence

p∗EG(D)⊗X×EGidA ∈ KKG�(X×EG)(p∗EG(P)⊗X×EGA, C0(X × EG)⊗X×EGA)

is invertible. If we forget the EG-structure, we still have an invertible element in KKG�X. Eq. (11)
implies C0(X×EG)⊗X×EGA�A and p∗EG(P)⊗X×EGA�P⊗XA ∈ 〈CI〉. These isomorphisms identify
p∗EG(D)⊗X×EGidA with D∗ ∈ KKG(P⊗XA, A). Thus D is invertible and A ∈ 〈CI〉. �

We do not know whether, conversely, any object in 〈CI〉 is isomorphic in KKG�X to a proper G-
C∗-algebra. Since A ∈ 〈CI〉 implies A�P⊗XA, this holds if and only if the source P of the Dirac
morphism for G�X has this property. Thus the question is whether we can find a Dirac morphism whose
source is proper. This can be done for many groups. For instance, if G is almost connected with maximal
compact subgroup K, then the cotangent bundle T ∗(G/K) always has a K-equivariant spin structure,
so that its Dirac operator is defined. It is indeed a Dirac morphism for G by results of Kasparov [28].
This is where our terminology comes from. Generalising this construction to non-Hausdorff manifolds,
one can construct concrete Dirac morphisms of a similar sort for totally disconnected groups with finite
dimensional EG (see [19,29]).

8. Dual Dirac morphisms

Let �N→ P
D→C0(X)→ N be a Dirac triangle.

Definition 8.1. We call � ∈ KKG�X(C0(X), P) a dual Dirac morphism for G�X if � ◦ D = idP. The
composition � := D� ∈ KKG�X(C0(X), C0(X)) is called a �-element for G�X.

Kasparov’s Dirac dual Dirac method is the main tool for proving injectivity and bijectivity of the
Baum–Connes assembly map. The following theorem shows that a dual Dirac morphism in the above
sense exists whenever the Dirac dual Dirac method in the usual sense applies. Our reformulation has the
advantage that the Dirac morphism is fixed, so that we only have to find one piece of structure. This is
quite useful for analysing the existence of a dual Dirac morphism (see [19]).

Theorem 8.2. Let A be a Z/2-graded G�X-C∗-algebra, � ∈ KKG�X(A, C0(X)) and � ∈ KKG�X

(C0(X), A). If � := �� ∈ KKG�X(C0(X), C0(X)) satisfies p∗EG(�) = 1 and A is proper, then there is a
dual Dirac morphism for G�X. Moreover, � is equal to the �-element.

If, in addition, A is trivially graded and �� = 1, then � and � themselves are Dirac and dual Dirac
morphisms for G.

Proof. Let D ∈ KKG�X(P, C0(X)) be a Dirac morphism. Even if A is graded, the same argument as
in the proof of Corollary 7.3 shows that D∗ ∈ KKG(P⊗XA, A) is invertible—provided A is proper. We
claim that the composite morphism

�: C0(X)
�−→A

D−1∗−→P⊗XA
�∗−→P
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is a dual Dirac morphism, that is, � ◦ D = 1P. We have D ◦ � = � ◦ � = � because exterior products are
graded commutative. Since D is a weak equivalence, p∗EG(D) is invertible. Since 1=p∗EG(�)=p∗EG(�D),
we get p∗EG(�)= p∗EG(D)−1. Therefore, p∗EG(�D)= 1= p∗EG(1). The map

p∗EG: KKG�X(P, P)→ RKKG�X(EG;P, P)

is bijective by Theorem 7.1 because P ∈ 〈CI〉. Hence �D= 1.
If A is trivially graded, then A ∈ 〈CI〉 by Corollary 7.3. The morphisms � and � are weak equivalences

because ��=1 and ��=� are. This implies that � is a Dirac morphism and that � is a dual Dirac morphism.
�

Theorem 8.3. The following assertions are equivalent:

8.3.1. there is a dual Dirac morphism (� ∈ KKG�X(C0(X), P) with �D= idP);
8.3.2. KKG�X∗ (N, P)= 0 (for all ∗ ∈ Z);
8.3.3. the natural map p∗EG: KKG�X∗ (C0(X), P) → RKKG�X∗ (EG;C0(X), P) is an isomorphism (for

all ∗ ∈ Z);
8.3.4. KKG�X∗ (A, B)= 0 for all A ∈ CC, B ∈ 〈CI〉;
8.3.5. the natural map KKG�X∗ (A, B)→ RKKG�X∗ (EG;A, B) is an isomorphism for all A ∈ KKG�X,

B ∈ 〈CI〉;
8.3.6. there is an equivalence of triangulated categories KKG�X�〈CI〉 × CC.

Suppose these equivalent conditions to be satisfied and let

� := D ◦ � ∈ KKG�X(C0(X), C0(X)).

Then �A := �⊗XA ∈ KKG�X(A, A) is an idempotent for all A ∈ KKG�X. We have �A= 0 if and only if
A ∈ CC and �A = id if and only if A ∈ 〈CI〉.
Proof. We often use the isomorphism RKKG�X∗ (EG;A, B)�KKG�X∗ (P⊗XA, B) proven in Theorem
7.1. A long exact sequence argument shows that 8.3.2 and 8.3.3 are equivalent. Conditions 8.3.4 and 8.3.5
are two ways of expressing that objects of 〈CI〉 are CC-injective and hence equivalent. The implications
8.3.6�⇒ 8.3.4�⇒8.3.2 and 8.3.3�⇒8.3.1 are trivial. It remains to prove that 8.3.1 implies 8.3.6. Along
the way we show the additional assertions about � (and part of the following corollary).

Since �D= idP, the map �N→ P in the Dirac triangle vanishes. Hence Lemma 2.2 yields an isomor-
phism C0(X)�P⊕ N such that the maps P→ C0(X)→ N become the obvious ones. Any two choices
for � differ by a morphism N → P. Therefore, 8.3.2 implies that � is unique. We cannot use this so far
because we still have to prove that 8.3.2 follows from 8.3.1. We may, however, choose � such that �=D�
is the orthogonal projection onto P that vanishes on N. We get a direct sum decomposition (in KK)

A�C0(X)⊗XA�P⊗XA⊕ N⊗XA

such that D⊗XidA is the inclusion of the first summand and �A is the orthogonal projection onto P⊗XA.
Theorem 4.7 yields �A = 1 if and only if A ∈ 〈CI〉, and �A = 0 if and only if A ∈ CC. Since

�B ◦ f = �⊗Xf = f ◦ �A
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for all f ∈ KKG�X(A, B), there are no non-zero morphisms between CC and 〈CI〉. The above decom-
position of A respects suspensions and exact triangles because the tensor product functors P⊗X�� and
N⊗X�� are triangulated. Hence we get an equivalence of triangulated categories 〈CI〉 ×CC�KKG. �

Corollary 8.4. Fix a Dirac morphism D ∈ KKG�X(P, C0(X)). Then the dual Dirac morphism and the
�-element are unique if they exist.

A morphism � ∈ KKG�X(C0(X), P) is a dual Dirac morphism if and only if p∗EG(�) is inverse to
p∗EG(D) if and only if p∗EG(D�)= 1.

Proof. We have already shown the uniqueness of � and hence of � during the proof of Theorem 8.3. The
map p∗EG: KKG�X∗ (P, P)→ RKKG�X∗ (EG;P, P) is an isomorphism by Theorem 7.1. Hence �D= id if
and only if p∗EG(�D)= id. Since D is a weak equivalence, p∗EG(D) is an isomorphism. Hence there is no
difference between left, right and two-sided inverses for p∗EG(D). �

Suppose now that a dual Dirac morphism exists. It induces a canonical section for the map P⊗XA→ A.
Hence the natural transformation LF(A) → F(A) for a covariant functor F is naturally split injective.
Similarly, the natural transformation F(A)→ F(P⊗XA) is naturally split surjective for a contravariant
functor F.

It is clear from Theorem 8.3 that � = 1 if and only if CC = 0. In this case, LF(A)�F(A) for any
functor on KKG�X, that is, any functor F satisfies the analogue of the Baum–Connes conjecture. Higson
and Kasparov show in [23] that all groups with the Haagerup property and in particular all amenable
groups have a dual Dirac element and satisfy �=1. Tu generalises their argument to groupoids that satisfy
an analogue of the Haagerup property in [45]. In particular, this applies to the special groupoids G�X.
We get:

Theorem 8.5. Suppose that the groupoid G�X is amenable or, more generally, acts continuously and
isometrically on a continuous field of affine Euclidean spaces over X. Then weakly contractible objects
of KKG�X are already isomorphic to 0 and weak equivalences are isomorphisms. The assembly map is
an isomorphism for any functor defined on KKG�X.

8.1. Approximate dual Dirac morphisms

In some cases of interest, for instance, for groups acting on bolic spaces, one cannot construct an actual
dual Dirac morphism but only approximations to one.

Definition 8.6. Suppose that for each G-compact proper G-space Y there is �Y ∈ KKG(�, P) such that
p∗Y (D ◦ �Y ) = 1 ∈ RKKG(Y ; �, �). Then we call the family (�Y ) an approximate dual Dirac morphism
for G. We also let �Y := D ◦ �Y .

Lemma 8.7. Suppose that for each G-compact proper G-spaceY there are a possibly Z/2-graded, proper
G-C∗-algebra AY and �Y ∈ KKG(AY , �), �Y ∈ KKG(�, AY ) such that p∗Y (�Y ◦�Y )=1 ∈ RKKG(Y ; �, �).
Then G has an approximate dual Dirac morphism with �Y = �Y �Y .

Proof. Proceed as in the proof of Theorem 8.2. �
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The situation of Lemma 8.7 occurs in [30]. It follows that a discrete group G has an approximate dual
Dirac morphism if it acts properly and by isometries on a weakly bolic, weakly geodesic metric space.
Clearly, G has an approximate dual Dirac morphism once it has a dual Dirac morphism. The converse
holds if G does not have too many compact subgroups:

Proposition 8.8. Suppose that there exist finitely many compact subgroups of G such that any compact
subgroup is subconjugate to one of them. If G has an approximate dual Dirac morphism, then it already
has a dual Dirac morphism.

Proof. Let D ∈ KKG(P, �) be a Dirac morphism for G. Let S be a finite set of compact subgroups
such that any other compact subgroup is subconjugate to one of them. Let Y be the disjoint union of
the spaces G/H for H ∈ S. By hypothesis, there is �Y ∈ KKG(�, P) such that �Y := D ◦ �Y satisfies
p∗Y (�Y ) = 1. This means that p∗G/H (�Y ) = 1 for all H ∈ S. By (14), this is equivalent to ResH

G(�Y ) = 1
for all H ∈ S. By hypothesis, any compact subgroup of G is subconjugate to one in S. Thus �Y is a weak
equivalence. Since D is a weak equivalence as well, it follows that �Y is a weak equivalence. Hence the
composition �Y ◦ D ∈ KKG(P, P) is a weak equivalence. Since P ∈ 〈CI〉, it is projective with respect
to weak equivalences by Proposition 4.4. Hence �Y ◦ D is invertible; � := (�Y ◦ D)−1�Y ∈ KKG(�, P) is
the desired dual Dirac morphism for G. �

It is unclear whether the condition on compact subgroups in Proposition 8.8 can be removed. Our next
goal is a weakening of Theorem 8.3.5, which still holds if G has an approximate dual Dirac morphism
and which is used in [19].

Lemma 8.9. Let D ∈ KKG(P, �) be a Dirac morphism and let � ∈ KKG(�, P). Define � := D ◦ � ∈
KKG(�, �) and �A := �⊗ idA ∈ KKG(A, A) for all A ∈ KKG. Then � ◦ D= �P. For A, B ∈ KKG, the
composites

�∗D∗: KKG(A, B)→ KKG(P⊗ A, B)→ KKG(A, B),

D∗�∗: KKG(P⊗ A, B)→ KKG(A, B)→ KKG(P⊗ A, B),

are both given by f 
→ �B ◦ f .

Proof. Since D is a weak equivalence, the map

D∗: KKG(P, P)→ KKG(P, �)

is an isomorphism. It maps both � ◦ D and �P to � ◦ D= D⊗ �. Hence � ◦ D= �P. The second assertion
now follows from �B ◦ f = �⊗ f = f ◦ �A′ for all A′, B ∈ KKG, f ∈ KKG(A′, B) (applied to A′ =A

and A′ = P⊗ A). �

Lemma 8.10. Let � ∈ KKG(�, �), let Y be a locally compact G-space and let A be a G�Y -C∗-algebra.
If p∗Y (�)= 1, then �A = 1.

Proof. We have a natural isomorphism B ⊗ A�p∗Y (B)⊗Y A for all A and B. Hence �A := � ⊗ idA =
p∗Y (�)⊗Y idA = 1⊗Y idA = 1. �
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For a finite set of compact subgroups S, let CI(S) ⊆ CI be the class of G-C∗-algebras that are KKG-
equivalent to IndG

H(A) for some H ∈ S and some A ∈ KKH . Let 〈CI(S)〉 be the localising subcategory
generated by CI(S). These subcategories form a directed set of localising subcategories. Let CIF be
their union, that is, A ∈ CIF if and only if A ∈ CI(S) for some finite set of compact subgroups S. This
is a thick, triangulated subcategory of KKG, but it need not be localising: it is only closed under countable
direct sums if all summands lie in the same category CI(S) for some S. The hypothesis of Proposition
8.8 ensures that CIF=CI(S) for some S, so that CIF is localising as well. Thus CIF=〈CI〉 in this
case. In general, CI ⊆ CIF ⊆ 〈CI〉 and both containments may be strict.

Proposition 8.11. If G has an approximate dual Dirac morphism, then the map

p∗EG: KKG∗ (A, B)→ RKKG∗ (EG;A, B) (28)

is an isomorphism for all B ∈ CIF, A ∈ KKG.

Proof. Fix B ∈ CIF and let S be a finite set of compact subgroups of G such that B ∈ 〈CI(S)〉. Let Y
be the disjoint union of the spaces G/H for H ∈ S. This is a G-compact proper G-space. Since G has
an approximate dual Dirac morphism, there is �Y ∈ KKG(�, P) such that � := D�Y satisfies p∗Y (�) = 1.
This yields �B ′ = 1 in KKG(B ′, B ′) for B ′ ∈ CI(S) by Lemma 8.10. In particular, �B ′ is invertible if
B ′ ∈ CI(S). The class of B ′ ∈ KKG for which �B ′ is invertible is localising by the five lemma and the
functoriality of direct sums. Hence �B ′ is invertible for all B ′ ∈ 〈CI(S)〉 and, especially, for our chosen
B. By Lemma 8.9, D∗: KKG(A, B) → KKG(P ⊗ A, B) is invertible because both D∗�∗Y and �∗Y D∗ are
equal to invertible maps of the form (�B)∗.Theorem 7.1 allows us to replace D∗ by the map p∗EG in (28).

�

9. The strong Baum–Connes conjecture

Definition 9.1. We say that G satisfies the strong Baum–Connes conjecture with coefficients A ∈ KKG

if the assembly map G�
L
r A→ G�rA is a KK-equivalence.

The strong Baum–Connes conjecture implies that the assembly map is an isomorphism for any functor
defined on KK. In particular, this covers K-theory, K-homology and local cyclic homology and coho-
mology of the reduced crossed product.

Suppose that G has a dual Dirac morphism and resulting �-element �.Applying descent, we get G�r�A ∈
KK(G�rA, G�rA). The strong Baum–Connes conjecture amounts to the assertion that G�r�A= 1. This
is known to be false for quite some time if A = � and G is a discrete subgroup of finite covolume in
Sp(n, 1) [41], even though the Baum–Connes conjecture itself holds in this case by [26].

For general G, the Baum–Connes conjecture with coefficients A holds if and only if G�
Obs
r A is K-

contractible as in Definition 6.5, whereas the strong Baum–Connes conjecture with coefficients A holds
if and only if G�

Obs
r A�0 in KK. These two assertions are equivalent if G�

Obs
r A belongs to the bootstrap

category 〈�〉. A sufficient condition for G�
Obs
r A ∈ 〈�〉 is that both G�

L
r A and G�rA belong to the

bootstrap category.
Now we use the notion of smooth compact subgroup introduced in Section 3.1. If G is discrete, any

finite subgroup of G is smooth. Let CI1 ⊆ CI be the set of all G-C∗-algebras of the form C0(G/H)
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for smooth, compact subgroups H ⊆ G. This is a variant of the subcategory CI0 ⊆ CI introduced in
Section 6.1.

The following lemma is motivated by work of Chabert and Echterhoff (see, for instance, [16,
Lemma 4.20]).

Proposition 9.2. The localising category 〈CI1〉 generated by CI1 contains 〈CI0〉 and hence also
contains the source of the Dirac morphism.

Proof. Our existence proof for Dirac morphisms shows that P ∈ 〈CI0〉. If the generators RH defined in
(24) belong to 〈CI1〉, then 〈CI0〉 ⊆ 〈CI1〉, and we are done. Let H ⊆ G be a large compact subgroup,
U := UH and V := U/H . Recall that RH=IndG

HC0(V
7). Since U is almost connected, there is a compact

normal subgroup N ⊆ U such that U/N is a Lie group. By maximality, H = NH ⊇ N . The quotient
H/N is a compact Lie group. It acts linearly on the R-vector space V 7. One can show that V 7 is an
H/N -CW-complex; this is a special case of [24]. Hence C0(V

7) belongs to the localising subcategory
of KKH/N generated by C0(H/K) with N ⊆ K ⊆ H . Hence RH belongs to the localising subcategory
of KKG generated by IndG

HC0(H/K)�C0(G/K) for such K. Since N is a strongly smooth compact
subgroup of G contained in each K, the assertion follows. �

Theorem 9.3. For any A ∈ KKG, the C∗-algebra G�
L
r A belongs to the localising subcategory of KK

generated by H�A for smooth compact subgroups H ⊆ G. In particular, G�
L
r A ∈ 〈�〉 once H�A ∈ 〈�〉

for all smooth compact subgroups H.
If H�A�0 in KK for all smooth compact subgroups H, then G�

L
r A�0 as well. If f ∈ KKG(A, B)

induces KK-equivalences H�A�H�B for all smooth compact subgroups H, then it induces a KK-
equivalence G�

L
r A�G�

L
r B.

If H�A is K-contractible for all smooth compact subgroups H, so is G�
L
r A. If f ∈ KKG(A, B) induces

a K-equivalence H�A→ H�B for all smooth compact subgroups H, then it induces a K-equivalence
G�

L
r A→ G�

L
r B.

Proof. Proposition 9.2 implies that G�
L
r A�G�r(P⊗A) belongs to the localising subcategory of KK gen-

erated by G�rC0(G/H, A) for smooth compact subgroups H ⊆ G. Eq. (9) yields G�rC0(G/H, A)∼M

H�A. This implies the criteria for G�
L
r A to be in 〈�〉, to be KK-contractible and to be K-contractible be-

cause all these conditions define localising subcategories of KK. The assertions about morphisms follow
if we replace f by its mapping cone. �

The following corollary is originally due to Tu [45]. It applies to amenable groups by Theorem 8.5.

Corollary 9.4. Let G be a locally compact group, let X be a G-space, and let A ∈ KKG�X. Suppose that
G�X has a dual Dirac morphism with � = 1 or, more generally, G�r�A = 1 ∈ KK(G�rA, G�rA). If
H�A ∈ 〈�〉 for all smooth compact subgroups H, then G�rA ∈ 〈�〉.
Proof. If �=1 ∈ KKG�X(C0(X), C0(X)), then (G�X)�r�A=1. This implies (G�X)�L

r A�(G�X)�rA

in KK. Now use Lemma 5.1 to get rid of the space X and apply Theorem 9.3. �

Theorem 9.3 describes other interesting localising subcategories of KKG on which Ktop∗ (G, ��) van-
ishes. Hence it gives a variant of the rigidity formulation of the Baum–Connes conjecture. Namely, G
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satisfies the Baum–Connes conjecture with arbitrary coefficients if and only if K∗(G�rA)�0 whenever
A ∈ KKG satisfies K∗(H�rA)�0 for all smooth compact subgroups H ⊆ G.

Proposition 9.5. If the G-C∗-algebra A is commutative (or just type I), it then G�
L
r A ∈ 〈�〉. In particular,

G�
L
r � ∈ 〈�〉. Suppose G�

L
r A ∈ 〈�〉 (for instance, A= �). Then the strong Baum–Connes conjecture with

coefficients A holds if and only if G�rA ∈ 〈�〉 and the usual Baum–Connes conjecture with coefficients
A holds.

Proof. If A is a type I C∗-algebra and H is compact, then H�A is a type I C∗-algebra as well (this
follows easily from [42, Theorem 6.1]). Therefore, it belongs to 〈�〉 (see [9, 22.3.5]). Thus G�

L
r A ∈ 〈�〉

by Theorem 9.3. The strong Baum–Connes conjecture is stronger than the Baum–Connes conjecture and
implies that G�rA ∈ 〈�〉 once G�

L
r A ∈ 〈�〉. The converse also holds because a K-equivalence between

objects of 〈�〉 is already a KK-equivalence. �

Therefore, if we already know that C∗r (G) ∈ 〈�〉, then the strong and the usual Baum–Connes conjecture
with trivial coefficients are equivalent. Chabert et al. show in [16] that C∗r (G) ∈ 〈�〉 if G is almost
connected or a linear algebraic group over the p-adic numbers or over the adele ring of a number field.
The Baum–Connes conjecture with trivial coefficients for these groups is also known, see [14,16]. Hence
these groups satisfy the strong Baum–Connes conjecture with trivial coefficients.

10. Permanence properties of the (strong) Baum–Connes conjecture

Let T and T′ be triangulated categories, let F :T → T′ be a triangulated functor, and let (N,P)

and (N′,P′) be complementary pairs of localising subcategories in T and T′, respectively. Suppose
F(P) ⊆ P′. Then L(F ′ ◦ F)�LF ′ ◦ LF up to isomorphism for any covariant functor F ′ defined on T′.
This trivial observation has lots of applications. When applied to restriction and induction functors, partial
crossed product functors and the complexification functor, we get permanence properties of the (strong)
Baum–Connes conjecture. We remark that Lemma 5.1 is another such result that logically belongs into
this section.

10.1. Restriction and induction

Proposition 10.1. Let H ⊆ G be a closed subgroup. The functors

ResH
G : KKG�X → KKH�X and IndG

H : KKH�X → KKG�X

preserve weak contractibility and weak equivalences and map 〈CI〉 to 〈CI〉. Therefore, ResH
G maps a

Dirac triangle for G�X to a Dirac triangle for H�X and IndG
H maps a Dirac triangle for H�X to a

Dirac triangle for G�X.

Proof. Restriction and induction in stages yield ResH
G(CC) ⊆ CC and IndG

H(CI) ⊆ CI and hence
IndG

H(〈CI〉) ⊆ 〈CI〉. To prove ResH
G(〈CI〉) ⊆ 〈CI〉, it suffices to show ResH

G(CI) ⊆ 〈CI〉 because
ResH

G is triangulated and commutes with direct sums. It is clear that ResH
G maps compactly induced

G-C∗-algebras to proper H-C∗-algebras. This implies the assertion by Corollary 7.3. As a consequence,
ResH

G maps a Dirac triangle for G�X to one for H�X.
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Next, we prove that IndG
H(CC) ⊆ CC. Let D ∈ KKG�X(P, C0(X)) be a Dirac morphism for G�X.

We have just seen that ResH
GD is a Dirac morphism for H�X. Let A ∈ KKH�X. Eq. (16) yields

P⊗XIndG
HA ≈ IndG

H(ResH
GP⊗XA).

By Theorem 4.7, IndG
HA ∈ CC is equivalent to P⊗XIndG

HA�0 and A ∈ CC is equivalent to ResH
GP⊗X

A�0. Thus IndG
H(CC) ⊆ CC. As a consequence, IndG

H maps a Dirac triangle for H�X to one for G�X.
�

It follows immediately from Proposition 10.1 that

L(F ◦ IndG
H)�(LF) ◦ IndG

H , Obs(F ◦ IndG
H)�(Obs F) ◦ IndG

H ,

L(F ◦ ResH
G)�(LF) ◦ ResH

G, Obs(F ◦ ResH
G)�(Obs F) ◦ ResH

G .

Since G�rIndG
HA∼MH�rA by (9), this yields natural KK-equivalences

G�
L
r IndG

HA�H�
L
r A, G�

Obs
r IndG

HA�H�
Obs
r A. (29)

Hence the (strong) Baum–Connes conjectures for G�rIndG
HA and H�rA are equivalent. As a result,

the (strong) Baum–Connes conjecture with coefficients and the (strong) Baum–Connes conjecture with
commutative coefficients are both hereditary for subgroups. For the usual Baum–Connes conjecture, this
is due to Chabert and Echterhoff [11].

10.2. Full and reduced crossed products and functoriality

Let �: G1 → G2 be a continuous group homomorphism. It induces a functor �∗: KKG2 → KKG1 .
Of course, �∗(�) = �. If � is open, then the universal property of full crossed products yields a natural
transformation

�∗: G1��∗(A)→ G2�A (30)

for A ∈ KKG2 (if � is not open, we only get a map to the multiplier algebra of G2�A). There is no
analogue of (30) for reduced crossed products. For instance, the homomorphism from G to the trivial
group induces a homomorphism C∗r (G)→ C∗r ({1}) if and only if G is amenable. Nevertheless, Ktop(G)

has the same functoriality as full crossed products. We can reprove this easily in our setup.

Theorem 10.2. The natural map G�A→ G�rA is a KK-equivalence for A ∈ 〈CI〉. Hence G�
LA�

G�
L
r A (in KK) for any A ∈ KKG.

Proof. Since full and reduced crossed products agree for compact groups, (9) yields that the map G�A→
G�rA is an isomorphism in KK for A ∈ CI. Since both crossed products are triangulated functors that
commute with direct sums, this extends from CI to 〈CI〉. This implies the second statement because the
localisations only see 〈CI〉. �

Corollary 10.3. There exists a natural map �∗: G1�
L
r �∗(A)→ G2�

L
r A for any open, continuous group

homomorphism �: G1 → G2 and any A ∈ KKG2 .
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Proof. Let Ã→ A be a CI-simplicial approximation in KKG2 , so that G2�Ã�G2�
LA. Since � maps

compact subgroups in G1 to compact subgroups in G2, the functor �∗: KKG2 → KKG1 preserves weak
equivalences. Hence �∗(Ã)→ �∗(A) is a weak equivalence in KKG1 . As such it induces an isomorphism
on LF for any functor F. Theorem 10.2 and (30) yield canonical maps

G1�
L
r �∗(A)�G1�

L�∗(A)�G1�
L�∗(Ã)

→ G1��∗(Ã)→ G2�Ã�G2�
LA�G2�

L
r A. �

10.3. Unions of open subgroups

Let G=∪Gn be a union of a sequence of open subgroups. For instance, adelic groups are of this form.
Then G�rA� lim−→ Gn�rA for any A ∈ KKG. Since restriction to Gn ⊆ G is a completely positive map

G�rA → Gn�rA, the inductive system (Gn�rA)n∈N is admissible. Hence we can replace the direct
limit by the homotopy direct limit (see Section 2.4).

Let �N→ P
D→ �→ N be a Dirac triangle for G. By Proposition 10.1, the functor ResGn

G maps this to
a Dirac triangle in KKGn . Hence

Gn�r(P⊗ A)�Gn�
L
r A, Gn�r(N⊗ A)�Gn�

Obs
r A.

Taking limits, we obtain

G�
L
r A�ho- lim−→ Gn�

L
r A, G�

Obs
r A�ho- lim−→ Gn�

Obs
r A. (31)

We have omitted restriction functors from our notation to avoid clutter. The following result is due to
Baum et al. [7] for the usual Baum–Connes conjecture.

Theorem 10.4. If the groups Gn satisfy the (strong) Baum–Connes conjecture with coefficients A for all
n ∈ N, then so does G.

Proof. Recall that G satisfies the Baum-Conjecture (or the strong Baum–Connes conjecture) with coeffi-
cients A if and only if G�

Obs
r A is K-contractible (or KK-contractible). Since the category of K-contractible

C∗-algebras is localising, it is closed under homotopy direct limits. Hence the assertions follow from (31).
�

10.4. Direct products of groups

Let G1 and G2 be locally compact groups and let G := G1 × G2. Let Dj ∈ KKGj (Pj , �) be Dirac
morphisms for the factors. Then D1 ⊗ D2 ∈ KKG1×G2(P1 ⊗ P2, �) is a Dirac morphism for G1 × G2
because

CI(G1)⊗ CI(G2) ⊆ CI(G1 ×G2) and CC(G1)⊗ CC(G2) ⊆ CC(G1 ×G2).

Let Aj ∈ KKGj for j = 1, 2 and put A := A1 ⊗ A2 ∈ KKG. We have a natural isomorphism

G�rA ≈ (G1�rA1)⊗ (G2�rA2)



252 R. Meyer, R. Nest / Topology 45 (2006) 209–259

(because we use minimal C∗-tensor products) and hence

G�
L
r A�G�r(A1 ⊗ P1)⊗ (A2 ⊗ P2)

≈ (G1�rA1 ⊗ P1)⊗ (G2�rA2 ⊗ P2)�(G1�
L
r A1)⊗ (G2�

L
r A2).

Furthermore, the assembly map G�
L
r A → G�rA is the exterior tensor product of the assembly maps

Gj�
L
r Aj → Gj�rAj for the factors.

There are, of course, similar isomorphisms for G�
Obs
r A. Therefore, if the strong Baum–Connes con-

jecture holds for G1�rA1 and G2�rA2, then also for G�rA. The corresponding assertion about the usual
Baum–Connes conjecture needs further hypotheses (see [16]) because we cannot always compute the
K-theory of a tensor product by the Künneth Formula. We can formulate this as

(G1�
Obs
r A1)⊗ (G2�

Obs
r A2)�(G1�

Obs
r A1)⊗L(G2�

Obs
r A2),

using the localised tensor product ⊗L introduced in Section 6.2.
Combining the results on finite direct products and unions of groups, we get assertions about restricted

direct products as in [16].

10.5. Group extensions

Next we consider a group extension N�G�G/N . If A is a G-C∗-algebra, then N�rA carries a
canonical twisted action of G/N . In [11], Chabert and Echterhoff use this to construct a partial crossed
product functor

N�r��: KKG→ KKG/N .

This functor is triangulated and commutes with direct sums. We have a natural isomorphism G/N�r
(N�rA)�G�rA in KK. The following result is due to Chabert et al. [16] for the usual Baum–Connes
conjecture.

Theorem 10.5. The functorN�r��: KKG→ KKG/N mapsCI toCIand hence 〈CI〉 to 〈CI〉.Therefore,
there is a natural isomorphism

G/N�
L
r (N�

L
r A)�G�

L
r A,

which is compatible with the isomorphism G/N�r(N�rA)�G�rA.
Suppose that the (strong) Baum–Connes conjecture holds for HN ⊆ G with coefficients A for any

smooth compact subgroup H ⊆ G/N . Then the (strong) Baum–Connes conjecture holds for G with
coefficients A if and only if it holds for G/N with coefficients N�rA.

Suppose that G/N and HN for compact subgroups H ⊆ G/N have a dual Dirac morphism and satisfy
�= 1. Then the same holds for G.

Proof. Let A be compactly induced from, say, the compact subgroup H ⊆ G. By (14), this means that
A is a G�G/H -C∗-algebra. We still have a canonical homomorphism from C0(G/HN) to the central
multiplier algebra of N�rA. This means that N�rA is compactly induced as a G/N -algebra. Therefore,
N�r�� preserves CI and hence 〈CI〉. This implies G/N�

L
r (N�

L
r A)�G�

L
r A.

Proposition 10.1implies that a Dirac morphism for HN is one for N as well. Hence the hypothesis of
the second paragraph is equivalent to the condition that the assembly map N�

L
r A→ N�rA in KKG/N
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induces a K-equivalence (or a KK-equivalence) H�(N�
L
r A) → H�(N�rA) for all smooth compact

subgroups H ⊆ G/N . By Theorem 9.3, the map G/N�
L
r (N�

L
r A)→ G/N�

L
r (N�rA) is a K-equivalence

(or a KK-equivalence) as well. Together with G�
L
r A�G/N�

L
r (N�

L
r A) this yields the assertions in the

second paragraph.
Now assume that G/N and the subgroups HN ⊆ G for H ⊆ G/N compact have dual Dirac mor-

phisms and satisfy � = 1. We show that G has the same properties. Recall that this is equivalent to
〈CI(G)〉 = KKG. The group homomorphism 
: G → G/N induces a triangulated functor commuting
with direct sums 
∗: KKG/N → KKG. Of course, 
∗(�)= �. Since 〈CI(G/N)〉 =KKG/N , the essential
range of 
∗ is generated by objects of the form 
∗(IndG/N

H A), where H ⊆ G/N is compact. We have


∗(IndG/N
H A)�IndG

HN
∗H(A), where 
H : HN → H is the restriction of 
. Hence � ∈ KKG belongs to the
localising subcategory generated by the ranges of the functors IndG

HN for compact subgroups H ⊆ G/N .
By hypothesis, KKHN = 〈CI(HN)〉. Since induction is a triangulated functor that commutes with

direct sums, the range of IndG
HN is contained in the localising subcategory of KKG generated by objects

of the form IndG
HN IndHN

L (D)�IndG
L(D) for compact subgroups L ⊆ HN and D ∈ KKL. As a result,

� ∈ KKG belongs to 〈CI(G)〉. This implies that the Dirac morphism is invertible, that is, G has a dual
Dirac morphism and �= 1. �

10.6. Real versus complex assembly maps

Now we reprove a result of Baum and Karoubi [6] and Schick [39]. In order to compare the real
and complex assembly maps, we have to distinguish between the real and complex Kasparov theories
in our notation. We denote them by KKG�X

R and KKG�X
C , respectively. We write A 
→ AC for the

complexification functor KKG�X
R → KKG�X

C . This functor is obviously triangulated and commutes with
direct sums and tensor products, that is, (A⊗(X)B)C�AC⊗(X)BC.

Proposition 10.6. The complexification functor KKG�X
R → KKG�X

C preserves weak contractibility and
weak equivalences, and it maps 〈CI〉 to 〈CI〉. Hence it maps a Dirac triangle in KKG�X

R to one in
KKG�X

C .

Proof. Since complexification commutes with restriction and induction, it maps CCR to CCC and CIR

to CIC. Being triangulated and compatible with direct sums, it also maps 〈CIR〉 to 〈CIC〉. This implies
the assertion about Dirac triangles. �

There is a long exact sequence that relates real and complex K-theory. This exact sequence is generalised
in [39] to a similar long exact sequences

· · · �→KKG�X
R,q−1(A, B)

	→KKG�X
R,q (A, B)

c→KKG�X
C,q (AC, BC)

�→KKG�X
R,q−2(A, B)

	→KKG�X
R,q−1(A, B)

c→KKG�X
C,q−1(AC, BC)

�→· · · , (32)

for any A, B ∈ KKG�X
R . The map c is the complexification functor, 	 is the product with the generator

of KK1(R, R)�Z/2 and � is the composition of the inverse of the Bott periodicity isomorphism with
“forgetting the complex structure”. In [39], (32) is only written down for KKG. The same proof works
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for KKG�X, even for equivariant Kasparov theory for groupoids. It is easy to see that (32) is natural with
respect to morphisms in KKG�X

R (see [39]). Hence the maps

KKG�X
C,q (AC, BC)→ KKG�X

C,q (A′C, B ′C)

induced by elements of KKG
R (A′, A) and KKG

R (B, B ′) are isomorphisms for all q ∈ Z once the corre-
sponding maps

KKG�X
R,q (A, B)→ KKG�X

R,q (A′, B ′)

are isomorphisms for all q ∈ Z. Remarkably, the converse also holds by [39, Lemma 3.1]. A special case
is Karoubi’s result that K∗(A)�0 if and only if K∗(AC)�0 [27]. Moreover, A�0 in KKG�X

R if and only
if AC�0 in KKG�X

C (because A�0 if and only if 0 induces the identity map on KKG�X∗ (A, A)).

Theorem 10.7. Let A ∈ KKG
R . The (strong) Baum–Connes conjecture for G holds with coefficients A if

and only if it holds with coefficients AC.

Proof. The (strong) Baum–Connes conjecture with coefficients A is equivalent to the statement that
K∗(G�

Obs
r A)�0 (or G�

Obs
r A�0 in KK). Proposition 10.6 implies G�

Obs
r AC�(G�

Obs
r A)C. Hence the

assertion follows from the results of [39] discussed above. �

Theorem 10.8. Let G be a locally compact group and X a locally compact G-space. If there is a dual
Dirac morphism in KKG�X

C , then there is one in KKG�X
R , and vice versa. In this case, we have �C = 1 if

and only if �R = 1.

Proof. By Theorem 8.3, a dual Dirac morphism exists if and only if D induces an isomorphism KKG�X∗
(C0(X), P)�KKG�X∗ (P, P). This holds both in the real and complex case. By Proposition 10.6, the Dirac
morphism in KKG�X

C is the complexification of the Dirac morphism in KKG�X
R . Hence the existence of a

dual Dirac morphism in KKG�X
C and KKG�X

R are equivalent by the results of [39] discussed above. Since
the complexification of a dual Dirac morphism in KKG�X

R is one in KKG�X
C , �C is the complexification of

�R. We have �=1 if and only if � is invertible if and only if multiplication by � on KKG�X∗ (C0(X), C0(X))

is an isomorphism. Again it follows from [39] that �R = 1 if and only if �C = 1. �

Appendix A. The equivariant Kasparov category is triangulated

We have defined a translation automorphism and a class of exact triangles on K̃K
G�X

in Section 3.
Here we prove that these data verify the axioms of a triangulated category (see [38]). More precisely, we

prove the equivalent assertion that the opposite category of K̃K
G�X

is triangulated.
By definition, the class of exact triangles is closed under isomorphism and the translation functor is an

automorphism. The zeroth axiom (TR 0) requires triangles of the form �X→ 0→ X
idX→X to be exact.

This follows from the contractibility of cone(idX)�C0(]0, 1])⊗X.
Axiom (TR 1) asks that for any morphism f : A→ B there should be an exact triangle �B → C →

A
f→B. If f is an equivariant ∗-homomorphism, we may take the mapping cone triangle of f. In general,
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we claim that any morphism in K̃K
G

is isomorphic to an equivariant ∗-homomorphism. We can first

replace f by a morphism in KKG because KKG and K̃K
G

are equivalent categories. By [34] we can
represent f by an equivariant ∗-homomorphism f∗: qsA→ qsB, where

qsA := K(L2(G×N))⊗ q(K(L2G)⊗ A).

If X= �, then the C∗-algebra qA is the usual one from the Cuntz picture for Kasparov theory. Otherwise,
we have to modify its definition so as to get a G�X-C∗-algebra. Namely, let A∗XA be the free product
of A with itself in the category of G�X-C∗-algebras. That is, it comes equipped with two natural maps
�1, �2: A→ A∗XA with the universal property that pairs of G�X-equivariant ∗-homomorphisms A→ B

correspond bijectively to G�X-equivariant ∗-homomorphisms A∗XA → B. We can construct A∗XA

as the quotient of A ∗ A by the ideal generated by the relations �1(f a1)�2(a2) ∼ �1(a1)�2(f a2) for all
a1, a2 ∈ A, f ∈ C0(X). The pair (idA, idA) induces a natural homomorphism A∗XA → A. Let qXA

be its kernel. With this modified definition of qA, the assertions of [34] remain true for KKG�X. In
particular, there is a natural KKG�X-equivalence qsA�A. Therefore, any morphism in KK is isomorphic
to an equivariant ∗-homomorphism. Thus axiom (TR 1) holds.

Axiom (TR 2) asks that a triangle �B → C → A→ B be exact if and only if �A→ �B → C → A

(with certain signs) is exact. It suffices to prove one direction because suspensions and desuspensions
evidently preserve exact triangles. Thus axiom (TR 2) is equivalent to the statement that the rotated
mapping cone triangle

�A
−�f−→�B

�−→ cone(f )
�−→A

is exact for any equivariant ∗-homomorphism f : A → B. We claim that this triangle is the extension
triangle for the natural extension

0 −→ �B
�−→ cone(f )

�−→A −→ 0

and hence exact. Build the diagram (5) for this extension. The resulting map �B → cone(�) is a homotopy
equivalence in a natural and hence equivariant fashion. Thus the above extension is admissible and gives
rise to an exact triangle. One easily identifies the map �A → �B in the extension triangle with −�f .
This finishes the proof of axiom (TR 2).

Suppose that we are given the solid arrows in the diagram

(33)

and that the rows in this diagram are exact triangles. Axiom (TR 3) asks that we can find � making
the diagram commute. We may first assume that the rows are mapping cone triangles for certain maps
f : A→ B and f ′: A′ → B ′ because any exact triangle is isomorphic to one of this form.

We represent � and � by Kasparov cycles, which we again denote by � and �. Since (33) commutes,
the Kasparov cycles f ′∗(�) and f ∗(�) are homotopic. Choose a homotopy H between them. Now we
glue together �, H and � to obtain a cycle for KKG�X(cone(f ), cone(f ′)) with the required properties.
Since (ev1)∗(H)=f ′∗(�), the pair (H, �) defines a Kasparov cycle for A and cyl(f ′). The constant family
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Fig. 2. The octahedral axiom.

� defines a cycle C� for KKG�X(C0(]0, 1], B), C0(]0, 1], B ′)). Reparametrisation gives a canonical
isomorphism

cone(f ′)�{(x, y) ∈ C0(]0, 1], B ′)⊕ cyl(f ′) | x(1)= f̃ ′(y)}.
Since f̃ ′∗(H, �) = (ev0)∗(H) = f ∗(�), we can glue together (H, �) and C� to get a cycle for KKG�X

(cone(f ), cone(f ′)). It is straightforward to see that it has the required properties. This finishes the
verification of axiom (TR 3).

It remains to verify Verdier’s octahedral axiom, which is crucial to localise triangulated categories.
Neeman formulates it rather differently in [38]. We shall use Verdier’s original octahedral axiom (see
[46] or [38, Proposition 1.4.6]) because it can be applied more directly and because its meaning is more
transparent in the applications we have met so far.

Proposition A.1. For any pair of morphisms f ∈ KKG(B, D), g ∈ KKG(A, B) there is a commuting
diagram as in Fig. 2 whose rows and columns are exact triangles. Moreover, the two maps �B → �D→
Cfg and �B → Cg → Cfg in this diagram coincide.

Proof. Replacing all C∗-algebras by appropriate universal algebras, we can achieve that f and g are
equivariant ∗-homomorphisms. We assume this in the following. We shall use the mapping cones and
mapping cylinders defined in Section 2. We define a natural G-C∗-algebra

cyl(f, g) := {(a, b, d) ∈ A⊕ C([0, 1], B)⊕ C([0, 1], D) | g(a)= b(1), f (b(0))= d(1)}
and natural equivariant ∗-homomorphisms

pA: cyl(f, g)→ A, (a, b, d) 
→ a,
jA: A→ cyl(f, g), a 
→ (a, constg(a), constfg(a)) ,
g̃: cyl(f, g)→ cyl(f ), (a, b, d) 
→ (b(0), d).

We have pAjA= idA, and jApA is homotopic to the identity map in a natural and hence equivariant way.
Thus cyl(f, g) is homotopy equivalent to A. Moreover, g̃jA = jBg, where jB : B → cyl(f ) is the natural
map, which is a homotopy equivalence. That is, the map g̃ is isomorphic to g: A→ B. Recall also that
the map f̃ : cyl(f )→ D is isomorphic to f : B → D.



R. Meyer, R. Nest / Topology 45 (2006) 209–259 257

The maps g̃: cyl(f, g) → cyl(f ), f̃ : cyl(f ) → D and f̃ ◦ g̃: cyl(f, g) → D are all surjective. The
kernel of f̃ is cone(f ), the kernel of g̃ is naturally isomorphic to cone(g). We let cone(f, g) be the kernel
of f̃ g̃. Thus we obtain a commutative diagram of G-C∗-algebras whose rows and columns are extensions:

(34)

We claim that all rows and columns in this diagram are admissible extensions. (Even more, the maps
K → cone(p) in (5) for these extensions are all homotopy equivalences.) We have already observed this
for the third row in Section 2.3, and the argument for the second row is similar. The assertion is trivial
for the first row and the third column. The remaining two columns can be treated in a similar fashion. A
conceptual reason for this is that they are pull backs of the standard extension cone(g)�cyl(g)�B along
the natural projections cone(f ) → B and cyl(f ) → B, respectively. The projection cyl(g) → B is a
cofibration in the notation of [40]; this property implies that K → cone(p) is a homotopy equivalence
and is hereditary for pull backs (see [40]).

We can now write down extension triangles for the rows and columns in (34) and replace A and B by
the homotopy equivalent algebras cyl(f, g) and cyl(f ), respectively. This yields a diagram as in Fig. 2.

The composite map �B → cone(g) → cone(f, g) is just the restriction of the canonical map
cone(g) → cone(f, g) to �B. There is a natural homotopy from this map to the composition �B →
�D→ cone(f, g) via translations involving f. This finishes the proof of Proposition A.1. �

We have now verified that K̃K
G�X

is a triangulated category.
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