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Abstract

The sheath physics of radiofrequency plasmas excited by a sinusoidal waveform is reasonably

well understood, but existing models are complicated and not easily extended to the more complex

waveforms recently introduced in applications. Turner and Chabert (Appl. Phys. Lett., 104

(2014) 164102) have proposed a model for collisionless sheaths that can easily be solved for arbitrary

waveforms. In this paper we extend this model to the case of collisional sheaths in the intermediate

pressure regime. Analytical expressions are derived for the electric field, the electric potential and

the density profiles in the sheath region. The collisionless and collisional models are compared for

a pulsed-voltage waveform.
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I. INTRODUCTION

Radiofrequency plasmas are widely used in the microelectronic industry [1, 2], and in

many other applications ranging from space propulsion (see for instance [3]) to medical

applications [4? –6]. In many instances, the most important phenomena take place in the

radiofrequency sheaths, and it is therefore essential to appropriately model this boundary

region. Historically, capacitive radiofrequency discharges were driven with a single-frequency

sinusoidal waveform (typically at 13.56 MHz) and an accurate sheath model was derived for

this case by Godyak [7] and Lieberman [8].

In the last two decades, it has become clear that more complex waveforms are needed

to meet industrial needs. Dual-frequency excitation with two well-separated sinusoidal fre-

quencies was first used. Robiche et al. [9] extended the Lieberman model for this case, with

the approximation of small amplitude of the high-frequency component. However, more

complex asymmetric waveforms were later introduced [10, 11] and the Lieberman sheath

model could not be easily extended to these situations.

Two sheath models were introduced in recent years by Czarnetzki [12], and Turner and

Chabert [13] to treat the more general case of arbitrary waveforms. The latter was used by

Lafleur et al. [14] to treat the more general case of two sheaths with self-bias formation. In

this paper we revisit the Turner and Chabert model and extend it to collisional sheaths. We

also give more details on the derivation and on the information that can be extracted from

this model. Here we do not discuss the validity of the key approximation that allows simple

analytical expressions to be obtained, as this was extensively discussed in ref [13].

II. THE RADIOFREQUENCY SHEATH MODEL

We consider a plasma with density at the sheath edge ne = ni = n0, electron temperature

Te, and a single species of positive ions with mass M . We assume that the plasma fills the

half-plane where x < 0 such that the sheath starts at x = 0, where a flux of ions given by

Γi = n0uB (1)

flows into the positive half-plane x > 0 (here uB ≡ (eTe/M)1/2 is the Bohm speed with e

the elementary charge and Te expressed in Volts). It follows that the sheath forms in the

positive half-plane, and this sheath region will end at an electrode. The position of this
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electrode, denoted by sm, depends on the plasma parameters and on the voltage applied

across the sheath.

We now assume that some time varying current density, J(t), flows through the plasma

and the sheath, and we assume that the frequency spectrum of this current permits the

assumption that ions passing through the sheath respond only to the time averaged fields.

Electrons, however, flow in and out of the sheath region as the current changes. In this case,

we can identify a point s(t), such that at any given time there is a region of positive space

charge where s(t) ≤ x < sm and a region of quasi-neutral plasma where 0 ≤ x < s(t). The

point denoted as s(t) is understood to be the instantaneous sheath edge (this representation

of the sheath is reasonable when sm ≫ λD). The time-averaged potential follows Poisson’s

equation
d2ϕ̄

dx2
= − ρ̄

ϵ0
, (2)

where ϵ0 is the vacuum permittivity, and the time-averaged space charge is

ρ̄ = e(ni − n̄e). (3)

The electronic contribution to ρ̄ is frequently important, and generally the time-averaged

electron density n̄e will be the result of elaborate computations that present a major theo-

retical challenge. A practical approach is to make an approximation that includes the proper

negative space charge within the sheath, without attempting an accurate representation of

the spatial distribution of this charge. This aim is achieved by expressing the electron space

charge as a constant fraction of the ion space charge,

n̄e = (1− ξ)ni, (4)

where the dimensionless parameter ξ will be computed self-consistently from the control

parameters. We then have

ρ̄ = e [ni − (1− ξ)ni] (5)

= ξeni. (6)

This approximation leads to mutually consistent solutions for both the time-averaged and

time-dependent sheath fields, without introducing any assumption about the time depen-

dence of the sheath current or voltage, as demonstrated in Turner and Chabert [13]. Conse-

quently, we can couple this model to an arbitrary current or voltage waveform, and proceed

to construct a related sheath model, without introducing any further approximations.
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In figure 1, time-averaged densities and potential in the sheaths are shown for ξ = 0.5 in

the collisionless case, after Eqs. (11) and (12) that will be derived below. In this figure the

vertical line at s(t)/sm represents the instantaneous sheath position. We will now construct

the solutions for both collisionless and collisional sheaths.

A. Collisionless sheaths

1. The fields

If the ions enter the sheath with a negligible velocity and are supposed to be collisionless,

then energy conservation gives
2eϕ̄

M
+ u2

i ≈ 0, (7)

and flux conservation implies

uini = uBn0 (8)

so that

ni = n0uB

(
−2eϕ̄

M

)−1/2

. (9)

Eqs. (6) and (9) are combined to obtain Poisson’s equation

d2ϕ̄

dx2
= −ξen0uB

ϵ0

(
−2eϕ̄

M

)−1/2

. (10)

This is the equation used in the classical Child-Langmuir theory, with the space-charge

reduced by the factor ξ, which can be easily integrated, as many text books show (see for

instance [1, 2]). The solution reads

ϕ̄(x) = V̄

(
x

sm

) 4
3

(11)

ni(x) = −4

9

ϵ0V̄

ξes2m

(
x

sm

)− 2
3

, (12)

where

V̄ = −
(
9ξen0uB

4ϵ0

)2/3 (
2e

M

)−1/3

s4/3m , (13)

is the time-averaged voltage on the electrode at x = sm. The boundary conditions imposed

in these solutions are ϕ̄(x = 0) = 0 and Ē(x = 0) = 0, and we note that V̄ < 0 so that

ni and sm are always positive. Eq. (13) reduces to the usual collisionless DC Child-Law
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when ξ = 1, but as it can be seen, the sheath size sm will increase significantly when ξ

decreases, i.e. when the electrons transiently neutralize the positive space charge for part of

the radiofrequency cycle.

Now consider the situation where the electrode voltage varies in time and we wish to

calculate the sheath potential at some instant. Then, using our step-front electron sheath

model, the sheath region is divided into a quasi-neutral region that ends at x = s(t), and a

positive space charge region for x > s(t) where

dE

dx
=

ρ

ϵ0
=

eni

ϵ0
= −4

9

V̄

ξs2m

(
x

sm

)− 2
3

, (14)

using Eq. (12). This equation can be integrated once to find the time and space varying

electric field, using the boundary condition at E(x = s) = 0, yielding

E(x, t) = −4

3

V̄

ξsm

[(
x

sm

) 1
3

−
(

s

sm

) 1
3

]
, (15)

in the region where s ≤ x ≤ sm. A second integration gives the time and space varying

potential in the same region as

ϕ(x, t) =
V̄

ξ

[(
x

sm

) 4
3

− 4

3

(
s

sm

) 1
3 x

sm
+

1

3

(
s

sm

) 4
3

]
, (16)

so that the instantaneous voltage at the electrode (at x = sm) is

V (t) = V0

[
1− 4

3

(
s

sm

) 1
3

+
1

3

(
s

sm

) 4
3

]
, (17)

where we have defined the maximum voltage V0 = V̄ /ξ, which occurs when s = 0. Hence

we can write

ξ =
V̄

V0

(18)

=
⟨V (t)⟩
V0

(19)

=

⟨
1− 4

3

(
s

sm

) 1
3

+
1

3

(
s

sm

) 4
3

⟩
. (20)

The value of ξ is therefore entirely defined by the sheath motion waveform, and consequently,

as we shall see in the next section, by the radiofrequency current waveform.
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2. Current-voltage characteristic of the sheath

To relate the sheath voltage and the sheath position to the radiofrequency current, we

simply note that within this model the current passing through the sheath is entirely dis-

placement at the electrode, so that

J(t) = ϵ0
∂E

∂t

∣∣∣∣
x=sm

(21)

= −4

3

ϵ0V0

sm

d

dt

[
1−

(
s

sm

) 1
3

]
. (22)

There is a physical constraint that J = 0 when s = 0 and s = sm. We choose the convention

that s(t = 0) = 0. The current waveform must be chosen to be consistent with this

convention, but this imposes no physically significant restrictions. Hence, the sheath position

is defined solely by the radiofrequency current waveform J(t),

s

sm
=

[
3

4

sm
ϵ0V0

∫ t

0

J(t)dt

]3
. (23)

Since s/sm has a maximum value of unity, we must satisfy

max

(
3

4

sm
ϵ0V0

∫ t

0

J(t)dt

)
= 1. (24)

This equation defines the current-voltage characteristic of the collisionless sheath and is

particularly useful for the widely-used circuit model descriptions of capacitive discharges.

B. Collisional sheaths

1. The fields

If we now consider an intermediate pressure regime in which the sheath is collisional, the

ion motion becomes limited by collisions and the ion fluid velocity in the sheath becomes a

function of the local time-averaged electric field [1, 2],

ui =
2eλi

πM |ui|
Ē (25)

where λi is the ion-neutral mean free path. Using ion flux conservation in the sheath, we

obtain the ion density in the sheath as a function of the electric field,

ni =
n0uB

(2eλiĒ/(πM))1/2
. (26)
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Gauss’s law,
dĒ

dx
=

eξni

ϵ0
=

eξn0uB

ϵ0(2eλiĒ/(πM))1/2
, (27)

is integrated to obtain the time-averaged electric field in the sheath,

Ē(x) =

[
3eξn0uB

2ϵ0(2eλi/(πM))1/2

]2/3
x2/3, (28)

where we have used Ē(0) = 0 (the electric field at the plasma-sheath interface) as a boundary

condition. A second integration gives the time-averaged potential in the sheath

ϕ̄(x) = −3

5

[
3eξn0uB

2ϵ0(2eλi/(πM))1/2

]2/3
x5/3, (29)

where we have again chosen ϕ̄(0) = 0. We can now rewrite this expression in the following

way,

ϕ̄(x) = V̄

(
x

sm

)5/3

, (30)

with

V̄ = −3

5

[
3eξn0uB

2ϵ0(2eλi/(πM))1/2

]2/3
s5/3m . (31)

This is the collisional radiofrequency Child-Law. Combining Eqs (26), (28) and (31) we

obtain the ion density in the sheath,

ni(x) = −10

9

ϵ0V̄

ξes2m

(
x

sm

)− 1
3

. (32)

Following the same procedure as in the collisionless sheath case we obtain the time-varying

fields in the sheath, starting from Gauss’s law,

dE

dx
=

ρ

ϵ0
=

eni

ϵ0
= −10

9

V̄

ξs2m

(
x

sm

)− 1
3

, (33)

such that using E(x = s) = 0 we have

E(x, t) = −15

9

V̄

ξsm

[(
x

sm

) 2
3

−
(

s

sm

) 2
3

]
, (34)

and

ϕ(x, t) =
V̄

ξ

[(
x

sm

) 5
3

− 5

3

(
s

sm

) 2
3 x

sm
+

2

3

(
s

sm

) 5
3

]
. (35)

The instantaneous voltage at the electrode becomes

V (t) = V0

[
1− 5

3

(
s

sm

) 2
3

+
2

3

(
s

sm

) 5
3

]
, (36)

and consequently

ξ =
V̄

V0

=

⟨
1− 5

3

(
s

sm

) 2
3

+
2

3

(
s

sm

) 5
3

⟩
. (37)
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2. Current-voltage characteristic of the sheath

The current passing through the sheath is now

J(t) = ϵ0
∂E

∂t

∣∣∣∣
x=sm

(38)

= −15

9

ϵ0V0

sm

d

dt

[
1−

(
s

sm

) 2
3

]
, (39)

such that if s(t = 0) = 0 we obtain

s

sm
=

[
9

15

sm
ϵ0V0

∫ t

0

J(t)dt

]3/2
. (40)

and the following condition must be satisfied:

max

(
9

15

sm
ϵ0V0

∫ t

0

J(t)dt

)
= 1. (41)

This equation defines the current-voltage characteristic of the collisional sheath.

III. RESULTS FOR A SHEATH DRIVEN BY A PULSED CURRENT WAVE-

FORM

The above expressions are completely general (within our fundamental approximation)

and therefore independent of the radiofrequency current waveform used. In reference [13],

single-frequency and dual-frequency sinusoidal waveforms were analysed in the collisionless

case and compared to Particle-In-Cell (PIC) simulations, showing excellent agreement. A

pulsed-current waveform was also proposed as an example. In this paper we treat this latter

case for both collisionless and collisional sheaths, with a discharge driven by a current density

of the form

J(t) = J0

(
t

tw

)
exp

(
1

2
− 1

2

t2

t2w

)
, (42)

where the function has positive and negative extrema of±J0, separated in time by an interval

2tw. We assume that this pulse is repeated at intervals tp, supposed large enough that there

is no appreciable interaction between successive pulses (tp ≫ tw). This type of waveform

has been recently proposed for self-bias generation and control on electrodes of equal areas

[11]. As we shall see, the voltage waveform is close to a Gaussian peak in this case, such

that the sheath voltage is small during most of the radiofrequency cycle and ξ is expected
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to be small when tp ≫ tw. To solve the model, we start by evaluating the integral of the

radiofrequency current, ∫ t

0

J(t)dt = J0tw exp

(
1

2

)[
1− exp

(
−1

2

t2

t2w

)]
(43)

max

(∫ t

0

J(t)dt

)
= J0tw exp

(
1

2

)
(44)

such that for the collisionless sheath case, using Eqs (23) and (24), we immediately obtain

the sheath position waveform and the current-voltage characteristic,

s(t)

sm
=

[
1− exp

(
−1

2

t2

t2w

)]3
(45)

1 =
3

4

smJ0tw exp
(
1
2

)
ϵ0V0

(46)

The value of ξ is then easily obtained,

ξ =

⟨
1− 4

3

(
s

sm

) 1
3

+
1

3

(
s

sm

) 4
3

⟩
(47)

≈ 1

2tp

∫ ∞

−∞

{
1− 4

3

[
1− exp

(
−1

2

t2

t2w

)]
+

1

3

[
1− exp

(
−1

2

t2

t2w

)]4}
dt (48)

=
tw
tp

√
π

(
1− 2

9

√
6 +

1

12

√
2

)
(49)

where we have used the fact that tp ≫ tw so that the integration can be performed from −∞

to ∞. A similar analysis can be done for the collisional sheath, with the following results

s(t)

sm
=

[
1− exp

(
−1

2

t2

t2w

)]3/2
(50)

1 =
9

5

smJ0tw exp
(
1
2

)
ϵ0V0

(51)

ξ ≈ 1

2tp

∫ ∞

−∞

{
1− 5

3

[
1− exp

(
−1

2

t2

t2w

)]
+

2

3

[
1− exp

(
−1

2

t2

t2w

)]5/2}
dt (52)

Figure 2 shows the evolution of the parameter ξ as a function of tp/tw. The solid line is

given by Eq. (49) for collisionless sheaths, while the points are numerical integrations of

Eq. (52) for collisional sheaths, which could not be integrated analytically. Consistent with

the voltage waveforms in figure 3, ξ is almost independent of the model used. When tp/tw

increases, the voltage pulse gets shorter and as a consequence the portion of the time where

the electrons fill the sheath gets larger. The time-averaged electron space charge therefore

becomes comparable to the time-independent ion space charge and consequently ξ goes to
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zero, leading to a very large maximum sheath thickness for a given time-averaged voltage

(according to Eqs. (13) and/or (31)).

The time-dependent results of the collisionless and collisional sheath models are compared

in figure 3. The sheath position as a function of the normalized time is shown in the top

figure while the voltage waveform is shown in the bottom figure. Significant differences

are seen in the sheath position evolution, but these differences are greatly smoothed out in

the voltage waveforms. Actually the voltage waveforms are reasonably close to a Gaussian

pulse, shown in red in the figure. A Gaussian voltage pulse would be obtained for a truly

capacitive sheath (a sheath modelled by a linear capacitor), for which the current pulse is

proportional to the time derivative of the voltage pulse. The departure from the Gaussian

accounts for the non-linear response of the moving sheath.

Although the voltage waveform seems mostly independent of the model used (collisional or

collisionless), the maximum sheath thickness for a given time-averaged voltage is a function

of the model used, and will significantly vary with collisionality. This is illustrated in figure

4 where the maximum sheath size, sm, is plotted as a function of the ion-neutral mean free

path λi. This figure has been obtained for argon ions with n0 = 1016 m−3, Te = 3 V, ξ = 0.5,

and V = 100 V. The solid line is from the collisional theory, Eq. (31), and the dashed-line is

the constant value of the collisionless theory, Eq. (13). The collisional theory must be used

for short mean free path, but as it can be seen, the two curves intersect at λi = 0.0006, which

may be seen as the limit where the collisional sheath theory starts to fail. Alternatively,

one may consider that the collisional theory should be used when λi < sm; this occurs for

λi = 0.0027 in the example of figure 4 (the gray area indicates the region where λi > sm).

IV. CONCLUSION

In this paper, we have rehearsed the sheath model presented previously in reference

[13] and extended it to the case of collisional sheaths in the intermediate pressure regime.

The model relies on a simplifying assumption and is easily solved for any radiofrequency

waveform, in the limit where the ions only respond to time-averaged fields. To illustrate

the practical use of this model, we chose a pulsed-current waveform of interest for modern

experiments. In this case, we have found a significant difference in the time-resolved sheath

position between collisional and collisionless sheath. This difference is not as pronounced in
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the voltage waveform. However, the maximum sheath thickness for a given time-averaged

voltage depends on the sheath collisionality, as seen in Eq. (31).
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FIG. 1. Time-averaged densities and potential in the sheaths for ξ = 0.5 in the collisionless case,

after Eqs. (11) and (12). The vertical line at s(t)/sm represents the instantaneous sheath position.
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FIG. 2. Evolution of the parameter ξ as a function of tp/tw.
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FIG. 3. Time variation of the sheath sizes (top) and the voltages (bottom) for a pulsed-current

from Eq. (42). The dashed lines are for collisionless sheaths while the dotted lines are for collisional

sheaths. The read line in the bottom figure is the voltage profile expected for a linear capacitor.
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