832 research outputs found
Realtime calibration of the A4 electromagnetic lead fluoride calorimeter
Sufficient energy resolution is the key issue for the calorimetry in particle
and nuclear physics. The calorimeter of the A4 parity violation experiment at
MAMI is a segmented calorimeter where the energy of an event is determined by
summing the signals of neighbouring channels. In this case the precise matching
of the individual modules is crucial to obtain a good energy resolution. We
have developped a calibration procedure for our total absorbing electromagnetic
calorimeter which consists of 1022 lead fluoride (PbF_2) crystals. This
procedure reconstructs the the single-module contributions to the events by
solving a linear system of equations, involving the inversion of a 1022 x
1022-matrix. The system has shown its functionality at beam energies between
300 and 1500 MeV and represents a new and fast method to keep the calorimeter
permanently in a well-calibrated state
Measurement of Strange Quark Contributions to the Nucleon's Form Factors at Q^2=0.230 (GeV/c)^2
We report on a measurement of the parity-violating asymmetry in the
scattering of longitudinally polarized electrons on unpolarized protons at a
of 0.230 (GeV/c)^2 and a scattering angle of \theta_e = 30^o - 40^o.
Using a large acceptance fast PbF_2 calorimeter with a solid angle of
\Delta\Omega = 0.62 sr the A4 experiment is the first parity violation
experiment to count individual scattering events. The measured asymmetry is
A_{phys} =(-5.44 +- 0.54_{stat} +- 0.27_{\rm sys}) 10^{-6}. The Standard Model
expectation assuming no strangeness contributions to the vector form factors is
. The difference is a direct measurement of the
strangeness contribution to the vector form factors of the proton. The
extracted value is G^s_E + 0.225 G^s_M = 0.039 +- 0.034 or F^s_1 + 0.130 F^s_2
= 0.032 +- 0.028.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Letters on Dec 11, 200
CAV1 inhibits metastatic potential in melanomas through suppression of the Integrin/Src/FAK signaling pathway.
Caveolin-1 (CAV1) is the main structural component of Caveolae which are plasma membrane invaginations that participate in vesicular trafficking and signal transduction events. Although, evidence has recently accumulated describing the function of CAV1 in several cancer types, its role in melanoma tumor formation and progression remains poorly explored. Here, by employing B16F10 melanoma cells as an experimental system, we directly explore the function of CAV1 in melanoma tumor growth and metastasis. We first show that CAV1 expression promotes proliferation while it suppresses migration and invasion of B16F10 cells in vitro. When orthotopically implanted in the skin of mice, B16F10 cells expressing CAV1 form tumors that are similar in size to their control counterpart. An experimental metastasis assay demonstrates that CAV1 expression suppresses the ability of B16F10 cells to form lung metastases in C57Bl/6 syngeneic mice. Additionally, CAV1 protein and mRNA levels are found to be significantly reduced in human metastatic melanoma cell lines and human tissue from metastatic lesions. Finally, we demonstrate that following integrin activation, B16F10 cells expressing CAV1 display reduced expression levels and activity of FAK and Src proteins. CAV1 expression also markedly reduces the expression levels of beta3 Integrin in B16F10 melanoma cells. In summary, our findings provide experimental evidence that CAV1 may function as an antimetastatic gene in malignant melanoma
Evidence for Strange Quark Contributions to the Nucleon's Form Factors at = 0.108 (GeV/c)
We report on a measurement of the parity violating asymmetry in the elastic
scattering of polarized electrons off unpolarized protons with the A4 apparatus
at MAMI in Mainz at a four momentum transfer value of = \Qsquare
(GeV/c) and at a forward electron scattering angle of 30. The measured asymmetry is = (\Aphys
\Deltastat \Deltasyst) 10. The
expectation from the Standard Model assuming no strangeness contribution to the
vector current is A = (\Azero \DeltaAzero) 10. We
have improved the statistical accuracy by a factor of 3 as compared to our
previous measurements at a higher . We have extracted the strangeness
contribution to the electromagnetic form factors from our data to be +
\FakGMs = \GEsGMs \DeltaGEsGMs at = \Qsquare (GeV/c).
As in our previous measurement at higher momentum transfer for + 0.230
, we again find the value for + \FakGMs to be positive,
this time at an improved significance level of 2 .Comment: 4 pages, 3 figure
Measurement of the Transverse Beam Spin Asymmetry in Elastic Electron Proton Scattering and the Inelastic Contribution to the Imaginary Part of the Two-Photon Exchange Amplitude
We report on a measurement of the asymmetry in the scattering of transversely
polarized electrons off unpolarized protons, A, at two Q values of
\qsquaredaveragedlow (GeV/c) and \qsquaredaveragedhighII (GeV/c) and a
scattering angle of . The measured transverse
asymmetries are A(Q = \qsquaredaveragedlow (GeV/c)) =
(\experimentalasymmetry alulowcorr \statisticalerrorlow
\combinedsyspolerrorlowalucor) 10 and
A(Q = \qsquaredaveragedhighII (GeV/c)) = (\experimentalasymme
tryaluhighcorr \statisticalerrorhigh
\combinedsyspolerrorhighalucor) 10. The first
errors denotes the statistical error and the second the systematic
uncertainties. A arises from the imaginary part of the two-photon
exchange amplitude and is zero in the one-photon exchange approximation. From
comparison with theoretical estimates of A we conclude that
N-intermediate states give a substantial contribution to the imaginary
part of the two-photon amplitude. The contribution from the ground state proton
to the imaginary part of the two-photon exchange can be neglected. There is no
obvious reason why this should be different for the real part of the two-photon
amplitude, which enters into the radiative corrections for the Rosenbluth
separation measurements of the electric form factor of the proton.Comment: 4 figures, submitted to PRL on Oct.
Measurement of the charged-pion polarisability
The COMPASS collaboration at CERN has investigated pion Compton scattering,
, at centre-of-mass energy below 3.5 pion
masses. The process is embedded in the reaction
, which is initiated by
190\,GeV pions impinging on a nickel target. The exchange of quasi-real photons
is selected by isolating the sharp Coulomb peak observed at smallest momentum
transfers, \,(GeV/). From a sample of 63\,000 events the
pion electric polarisability is determined to be $\alpha_\pi\ =\ (\,2.0\ \pm\
0.6_{\mbox{\scriptsize stat}}\ \pm\ 0.7_{\mbox{\scriptsize syst}}\,) \times
10^{-4}\,\mbox{fm}^3\alpha_\pi=-\beta_\pi$, which
relates the electric and magnetic dipole polarisabilities. It is the most
precise measurement of this fundamental low-energy parameter of strong
interaction, that has been addressed since long by various methods with
conflicting outcomes. While this result is in tension with previous dedicated
measurements, it is found in agreement with the expectation from chiral
perturbation theory. An additional measurement replacing pions by muons, for
which the cross-section behavior is unambigiously known, was performed for an
independent estimate of the systematic uncertainty.Comment: Published version: 9 pages, 3 figures, 1 tabl
Recommended from our members
Sponsor ownership in Asian REITs
This study examines the relationship between sponsor ownership and firm performance proxied by firm value, operating cash flow, and dividend policy with Asian real estate investment trusts (REITs) in Japan, Hong Kong, Malaysia, and Singapore for the period from 2002 to 2012, focusing on both the incentive alignment effect and the entrenchment effect. Our study sheds new light on effective corporate governance for Asian REITs that are prone to agency problems. Such agency problems arise from the inequitable distribution of power to sponsors that results from the external management structure. The findings suggest that larger sponsor ownership aligns the interests of sponsors and minority shareholders and enhances the performance of Asian REITs, while such an effect diminishes as sponsors become more entrenched. We find that the incentive alignment effect and entrenchment effect are primarily driven by developer-sponsored REITs. Also evident is that the presence of institutional investors mitigates agency problems and increases firm performance
New Measurements of the Beam Normal Spin Asymmetries at Large Backward Angles with Hydrogen and Deuterium Targets
New measurements of the beam normal single spin asymmetry in the electron elastic and quasielastic scattering on the proton and deuteron, respectively, at large backward angles and at Q2=0.22 (GeV/c)2 and Q2=0.35 (GeV/c)2 are reported. The experimentally observed asymmetries are compared with the theoretical calculation of Pasquini and Vanderhaeghen [Phys. Rev. C 70, 045206 (2004).PRVCAN0556-281310.1103/PhysRevC.70.045206]. The agreement of the measurements with the theoretical calculations shows a dominance of the inelastic intermediate excited states of the nucleon, πN and the Δ resonance. The measurements explore a new, important parameter region of the exchanged virtual photon virtualities
Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering
A semi-inclusive measurement of charged hadron multiplicities in deep
inelastic muon scattering off an isoscalar target was performed using data
collected by the COMPASS Collaboration at CERN. The following kinematic domain
is covered by the data: photon virtuality (GeV/), invariant
mass of the hadronic system GeV/, Bjorken scaling variable in the
range , fraction of the virtual photon energy carried by the
hadron in the range , square of the hadron transverse momentum
with respect to the virtual photon direction in the range 0.02 (GeV/ (GeV/). The multiplicities are presented as a
function of in three-dimensional bins of , , and
compared to previous semi-inclusive measurements. We explore the
small- region, i.e. (GeV/), where
hadron transverse momenta are expected to arise from non-perturbative effects,
and also the domain of larger , where contributions from
higher-order perturbative QCD are expected to dominate. The multiplicities are
fitted using a single-exponential function at small to study
the dependence of the average transverse momentum on , and . The power-law behaviour of the
multiplicities at large is investigated using various
functional forms. The fits describe the data reasonably well over the full
measured range.Comment: 28 pages, 20 figure
- …
