1,643 research outputs found

    Spin order in the one-dimensional Kondo and Hund lattices

    Get PDF
    We study numerically the one-dimensional Kondo and Hund lattices consisting of localized spins interacting antiferro or ferromagnetically with the itinerant electrons, respectively. Using the Density Matrix Renormalization Group we find, for both models and in the small coupling regime, the existence of new magnetic phases where the local spins order forming ferromagnetic islands coupled antiferromagnetically. Furthermore, by increasing the interaction parameter ∣J∣|J| we find that this order evolves toward the ferromagnetic regime through a spiral-like phase with longer characteristic wave lengths. These results shed new light on the zero temperature magnetic phase diagram for these models.Comment: PRL, to appea

    Two-state behaviour of Kondo trimers

    Get PDF
    The electronic properties and spectroscopic features of a magnetic trimer with a Kondo-like coupling to a non-magnetic metallic substrate are analyzed at zero temperature. The substrate density of states is depressed in the trimer neighbourhood, being exactly zero at the substrate chemical potential. The size of the resonance strongly depends on the magnetic state of the trimer, and exhibits a two-state behavior. The geometrical dependence of these results agree qualitatively with recent experiments and could be reproduced in a triangular quantum dot arrangement.Comment: 5 pages, including 4 figure

    Estimation of Dietary Iron Bioavailability from Food Iron Intake and Iron Status

    Get PDF
    Currently there are no satisfactory methods for estimating dietary iron absorption (bioavailability) at a population level, but this is essential for deriving dietary reference values using the factorial approach. The aim of this work was to develop a novel approach for estimating dietary iron absorption using a population sample from a sub-section of the UK National Diet and Nutrition Survey (NDNS). Data were analyzed in 873 subjects from the 2000–2001 adult cohort of the NDNS, for whom both dietary intake data and hematological measures (hemoglobin and serum ferritin (SF) concentrations) were available. There were 495 men aged 19–64 y (mean age 42.7±12.1 y) and 378 pre-menopausal women (mean age 35.7±8.2 y). Individual dietary iron requirements were estimated using the Institute of Medicine calculations. A full probability approach was then applied to estimate the prevalence of dietary intakes that were insufficient to meet the needs of the men and women separately, based on their estimated daily iron intake and a series of absorption values ranging from 1–40%. The prevalence of SF concentrations below selected cut-off values (indicating that absorption was not high enough to maintain iron stores) was derived from individual SF concentrations. An estimate of dietary iron absorption required to maintain specified SF values was then calculated by matching the observed prevalence of insufficiency with the prevalence predicted for the series of absorption estimates. Mean daily dietary iron intakes were 13.5 mg for men and 9.8 mg for women. Mean calculated dietary absorption was 8% in men (50th percentile for SF 85 µg/L) and 17% in women (50th percentile for SF 38 µg/L). At a ferritin level of 45 µg/L estimated absorption was similar in men (14%) and women (13%). This new method can be used to calculate dietary iron absorption at a population level using data describing total iron intake and SF concentration

    Phase diagram of the extended Hubbard chain with charge-dipole interactions

    Full text link
    We consider a modified extended Hubbard model (EHM) which, in addition to the on-site repulsion U and nearest-neighbor repulsion V, includes polarization effects in second-order perturbation theory. The model is equivalent to an EHM with renormalized U plus a next-nearest-neighbor repulsion term. Using a method based on topological quantum numbers (charge and spin Berry phases), we generalize to finite hopping t the quantum phase diagram in one dimension constructed by van den Brink et al. (Phys. Rev. Lett. 75, 4658 (1995)). At hopping t=0 there are two charge density-wave phases, one spin density-wave phase and one intermediate phase with charge and spin ordering, depending on the parameter values. At t \neq 0 the nature of each phase is confirmed by studying correlation functions. However, in addition to the strong-coupling phases, a small region with bond ordering appears. The region occupied by the intermediate phase first increases and then decreases with increasing t, until it finally disappears for t of the order but larger than U. For small t, the topological transitions agree with the results of second order perturbation theory.Comment: 6 pages, 5 figures, two columns latex version. Accepted for publication in Physical Review B. Mistaken reference 16 has been correcte

    Electron Spin Resonance of defects in the Haldane System Y(2)BaNiO(5)

    Full text link
    We calculate the electron paramagnetic resonance (EPR) spectra of the antiferromagnetic spin-1 chain compound Y(2)BaNi(1-x)Mg(x)O(5) for different values of x and temperature T much lower than the Haldane gap (~100K). The low-energy spectrum of an anisotropic Heisenberg Hamiltonian, with all parameters determined from experiment, has been solved using DMRG. The observed EPR spectra are quantitatively reproduced by this model. The presence of end-chain S=1/2 states is clearly observed as the main peak in the spectrum and the remaining structure is completely understood.Comment: 5 pages, 4 figures include

    Hole dynamics in generalized spin backgrounds in infinite dimensions

    Full text link
    We calculate the dynamical behaviour of a hole in various spin backgrounds in infinite dimensions, where it can be determined exactly. We consider hypercubic lattices with two different types of spin backgrounds. On one hand we study an ensemble of spin configurations with an arbitrary spin probability on each sublattice. This model corresponds to a thermal average over all spin configurations in the presence of staggered or uniform magnetic fields. On the other hand we consider a definite spin state characterized by the angle between the spins on different sublattices, i.e a classical spin system in an external magnetic field. When spin fluctuations are considered, this model describes the physics of unpaired particles in strong coupling superconductors.Comment: Accepted in Phys. Rev. B. 18 pages of text (1 fig. included) in Latex + 2 figures in uuencoded form containing the 2 postscripts (mailed separately

    Paper Session I-C - Non-Destructive Detection of Corrosion Under Paint on Critical Surfaces

    Get PDF
    We describe our proof-of-concept demonstration of the well-known thermal diffusion imaging technique *\u3e 2\u3e3 for detection of corrosion under paint on critical surfaces. Our first application will be the detection and mapping of corrosion on arbiter vehicle wing spars and rudder speed brakes. The technique will also used for the evaluation of doubler plate bond integrity on the rudder speed brakes

    Spin-orbit coupling and ESR theory for carbon nanotubes

    Get PDF
    A theoretical description of ESR in 1D interacting metals is given, with primary emphasis on carbon nanotubes. The spin-orbit coupling is derived, and the resulting ESR spectrum is analyzed by field theory and exact diagonalization. Drastic differences in the ESR spectra of single-wall and multi-wall nanotubes are found. For single-wall tubes, the predicted double peak spectrum could reveal spin-charge separation.Comment: 4 pages, 1 figure, final version to appear in PR

    Shadow band in the one-dimensional large UU Hubbard model

    Full text link
    We show that the factorized wave-function of Ogata and Shiba can be used to calculate the kk dependent spectral functions of the one-dimensional, infinite UU Hubbard model, and of some extensions to finite UU. The resulting spectral function is remarkably rich: In addition to low energy features typical of Luttinger liquids, there is a well defined band, which we identify as the shadow band resulting from 2kF2k_F spin fluctuations. This band should be detectable experimentally because its intensity is comparable to that of the main band for a large range of momenta.Comment: Latex file. 4 pages. Figures upon reques
    • …
    corecore