108 research outputs found

    Clustering the lexicon in the brain: a meta-analysis of the neurofunctional evidence on noun and verb processing

    Get PDF
    Although it is widely accepted that nouns and verbs are functionally independent linguistic entities, it is less clear whether their processing recruits different brain areas. This issue is particularly relevant for those theories of lexical semantics (and, more in general, of cognition) that suggest the embodiment of abstract concepts, i.e., based strongly on perceptual and motoric representations. This paper presents a formal meta analysis of the neuroimaging evidence on noun and verb processing in order to address this dichotomy more effectively at the anatomical level. We used a hierarchical clustering algorithm that grouped fMRI/PET activation peaks solely on the basis of spatial proximity. Cluster specificity for grammatical class was then tested on the basis of the noun verb distribution of the activation peaks included in each cluster. 32 clusters were identified: three were associated with nouns across different tasks (in the right inferior temporal gyrus, the left angular gyrus, and the left inferior parietal gyrus); one with verbs across different tasks (in the posterior part of the right middle temporal gyrus); and three showed verb specificity in some tasks and noun specificity in others (in the left and right inferior frontal gyrus and the left insula). These results do not support the popular tenets that verb processing is predominantly based in the left frontal cortex and noun processing relies specifically on temporal regions; nor do they support the idea that verb lexical semantic representations are heavily based on embodied motoric information. Our findings suggest instead that the cerebral circuits deputed to noun and verb processing lie in close spatial proximity in a wide network including frontal, parietal, and temporal regions. The data also indicate a predominant \u2013 but not exclusive \u2013 left lateralization of the network

    Hungry brains: A meta-analytical review of brain activation imaging studies on food perception and appetite in obese individuals

    Get PDF
    The dysregulation of food intake in chronic obesity has been explained by different theories. To assess their explanatory power, we meta-analyzed 22 brain-activation imaging studies. We found that obese individuals exhibit hyper-responsivity of the brain regions involved in taste and reward for food-related stimuli. Consistent with a Reward Surfeit Hypothesis, obese individuals exhibit a ventral striatum hyper-responsivity in response to pure tastes, particularly when fasting. Furthermore, we found that obese subjects display more frequent ventral striatal activation for visual food cues when satiated: this continued processing within the reward system, together with the aforementioned evidence, is compatible with the Incentive Sensitization Theory. On the other hand, we did not find univocal evidence in favor of a Reward Deficit Hypothesis nor for a systematic deficit of inhibitory cognitive control. We conclude that the available brain activation data on the dysregulated food intake and food-related behavior in chronic obesity can be best framed within an Incentive Sensitization Theory. Implications of these findings for a brain-based therapy of obesity are briefly discussed

    Neuroimaging Studies on Disorders of Consciousness : a Meta-Analytic Evaluation

    Get PDF
    Neuroimaging tools could open a window on residual neurofunctional activity in the absence of detectable behavioural responses in patients with disorders of consciousness (DOC). Nevertheless, the literature on this topic is characterised by a large heterogeneity of paradigms and methodological approaches that can undermine the reproducibility of the results. To explicitly test whether task-related functional magnetic resonance imaging (fMRI) can be used to systematically detect neurofunctional differences between different classes of DOC, and whether these differences are related with a specific category of cognitive tasks (either active or passive), we meta-analyzed 22 neuroimaging studies published between 2005 and 2017 using the Activation Likelihood Estimate method. The results showed that: (1) active and passive tasks rely on well-segregated patterns of activations; (2) both unresponsive wakeful syndrome and patients in minimally conscious state activated a large portion of the dorsal-attentional network; (3) shared activations between patients fell mainly in the passive activation map (7492 voxels), while only 48 voxels fell in a subcortical region of the active-map. Our results suggest that DOCs can be described along a continuum-rather than as separated clinical categories-and characterised by a widespread dysfunction of brain networks rather than by the impairment of a well functionally anatomically defined one

    Autonomic responses to emotional linguistic stimuli and amplitude of low-frequency fluctuations predict outcome after severe brain injury

    Get PDF
    An accurate prognosis on the outcome of brain-injured patients with disorders of consciousness (DOC) remains a significant challenge, especially in the acute stage. In this study, we applied a multiple-technique approach to provide accurate predictions on functional outcome after 6 months in 15 acute DOC patients. Electrophysiological correlates of implicit cognitive processing of verbal stimuli and data-driven voxel-wise resting-state fMRI signals, such as the fractional amplitude of low-frequency fluctuations (fALFF), were employed. Event-related electrodermal activity, an index of autonomic activation, was recorded in response to emotional words and pseudo-words at baseline (T0). On the same day, patients also underwent a resting-state fMRI scan. Six months later (T1), patients were classified as outcome-negative and outcome-positive using a standard functional outcome scale. We then revisited the baseline measures to test their predictive power for the functional outcome measured at T1. We found that only outcome-positive patients had an earlier, higher autonomic response for words compared to pseudo-words, a pattern similar to that of healthy awake controls. Furthermore, DOC patients showed reduced fALFF in the posterior cingulate cortex (PCC), a brain region that contributes to autonomic regulation and awareness. The event-related electrodermal marker of residual cognitive functioning was found to have a significant correlation with residual local neuronal activity in the PCC. We propose that a residual autonomic response to cognitively salient stimuli, together with a preserved resting-state activity in the PCC, can provide a useful prognostic index in acute DOC

    How many deficits in the same dyslexic brains? A behavioural and fMRI assessment of comorbidity in adult dyslexics

    Get PDF
    Dyslexia can have different manifestations: this has motivated different theories on its nature, on its underlying brain bases and enduring controversies on how to best treat it. The relative weight of the different manifestations has never been evaluated using both behavioural and fMRI measures, a challenge taken here to assess the major systems called into play in dyslexia by different theories. We found that adult well-compensated dyslexics were systematically impaired only in reading and in visuo-phonological tasks, while deficits for other systems (e.g., motor/cerebellar, visual magnocellular/motion perception) were only very occasional. In line with these findings, fMRI showed a reliable hypoactivation only for the task of reading, in the left occipito-temporal cortex (l-OTC). The l-OTC, normally a crossroad between the reading system and other systems, did not show the same level of intersection in dyslexics; yet, it was not totally silent because it responded, in segregated parts, during auditory phonological and visual motion perception tasks. This minimal behavioural and functional anatomical comorbidity demonstrates that a specific deficit of reading is the best description for developmental dyslexia, at least for adult well-compensated cases, with clear implications for rehabilitation strategies. The reduced intersection of multiple systems in the l-OTC suggests that dyslexics suffer from a coarser connectivity, leading to disconnection between the multiple domains that normally interact during reading

    The Quantitative Methods Boot Camp:Teaching Quantitative Thinking and Computing Skills to Graduate Students in the Life Sciences

    Get PDF
    <div><p>The past decade has seen a rapid increase in the ability of biologists to collect large amounts of data. It is therefore vital that research biologists acquire the necessary skills during their training to visualize, analyze, and interpret such data. To begin to meet this need, we have developed a “boot camp” in quantitative methods for biology graduate students at Harvard Medical School. The goal of this short, intensive course is to enable students to use computational tools to visualize and analyze data, to strengthen their computational thinking skills, and to simulate and thus extend their intuition about the behavior of complex biological systems. The boot camp teaches basic programming using biological examples from statistics, image processing, and data analysis. This integrative approach to teaching programming and quantitative reasoning motivates students’ engagement by demonstrating the relevance of these skills to their work in life science laboratories. Students also have the opportunity to analyze their own data or explore a topic of interest in more detail. The class is taught with a mixture of short lectures, Socratic discussion, and in-class exercises. Students spend approximately 40% of their class time working through both short and long problems. A high instructor-to-student ratio allows students to get assistance or additional challenges when needed, thus enhancing the experience for students at all levels of mastery. Data collected from end-of-course surveys from the last five offerings of the course (between 2012 and 2014) show that students report high learning gains and feel that the course prepares them for solving quantitative and computational problems they will encounter in their research. We outline our course here which, together with the course materials freely available online under a Creative Commons License, should help to facilitate similar efforts by others.</p></div
    • 

    corecore