381 research outputs found

    Encapsulation of Barberry Fruit Extracts by Spray Drying and Liposome Entrapment

    Get PDF
    Barberry is a native Iranian plant including species Berberis integerrima and B. vulgaris. Barberry fruit is used for preparing sauces, jellies, carbonated drinks, candies, food colour powders, jams, marmalades, chocolates, juices, and nectars. They are used as a natural food colorant rich in anthocyanins instead of harmful artificial ones. They contain polyphenols and antioxidants that reduce damage from free radicals and prevent chronic diseases and cancers. Barberry fruit extracts were encapsulated in maltodextrin by spray drying and liposome entrapment. The sizes of spray dried particles were reported 1–20 μm by SEM. Dimensions of empty and extract loaded liposomes (B. vulgaris and B. integerrima) were 18–28, 37–51, and 51–77 nm, respectively, by FE-SEM. The moist diameter of liposomes measured by dynamic light scattering (DLS) method at day 0 and after 6 months at –18 °C were as follows; empty liposomes: 163.9±2.23 and 378.90±4.98, liposomes loaded with extracts: 135.2±2.04 and 160.90±2.19 (B. vulgaris) and 113.4±1.83 and 144.20±2.01 nm (B. integerrima). Evaluation of thermal-oxidative decomposition from differential scanning calorimetry (DSC) results at 0–45–90 days showed that the antioxidant activity and the onset temperature of the encapsulated extract was higher than the control. The extracts encapsulated in liposomes, especially B. integerrima extract, had better antioxidant properties

    Fermi Large Area Telescope Observations of Markarian 421: The Missing Piece of its Spectral Energy Distribution

    Get PDF
    We report on the γ-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) γ-ray spectrum above 0.3 GeV can be well described by a power-law function with photon index Γ = 1.78 ± 0.02 and average photon flux F(\u3e 0.3 GeV) = (7.23 ± 0.16) × 10-8 ph cm-2 s-1. Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations in the photon flux (up to a factor ~3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in γ-rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site

    Fermi observations of high-energy gamma-ray emission from GRB 090217A

    Full text link
    The Fermi observatory is advancing our knowledge of Gamma-Ray Bursts (GRBs) through pioneering observations at high energies, covering more than 7 decades in energy with the two on-board detectors, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Here we report on the observation of the long GRB 090217A which triggered the GBM and has been detected by the LAT with a significance greater than 9 sigma. We present the GBM and LAT observations and on-ground analyses, including the time-resolved spectra and the study of the temporal profile from 8 keV up to 1 GeV. All spectra are well reproduced by a Band model. We compare these observations to the first two LAT-detected, long bursts GRB 080825C and GRB 080916C. These bursts were found to have time-dependent spectra and exhibited a delayed onset of the high-energy emission, which are not observed in the case of GRB 090217A. We discuss some theoretical implications for the high-energy emission of GRBs.Comment: 17 pages, 4 figures. Contact Authors: Fred, Piron; Sara, Cutini; Andreas, von Kienli

    Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT

    Full text link
    Pulsars are rapidly-rotating, highly-magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently, only seven were observed to pulse in gamma rays and these were all discovered at other wavelengths. The Fermi Large Area Telescope makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics and the energetics of pulsar wind nebulae and supernova remnants.Comment: Corresponding authors: Michael Dormody, Paul S. Ray, Pablo M. Saz Parkinson, Marcus Ziegle

    Fermi-LAT observations of the exceptional gamma-ray outbursts of 3C 273 in September 2009

    Full text link
    We present the light curves and spectral data of two exceptionally luminous gamma-ray outburts observed by the Large Area Telescope (LAT) experiment on board Fermi Gamma-ray Space Telescope from 3C 273 in September 2009. During these flares, having a duration of a few days, the source reached its highest gamma-ray flux ever measured. This allowed us to study in some details their spectral and temporal structures. The rise and decay are asymmetric on timescales of 6 hours, and the spectral index was significantly harder during the flares than during the preceding 11 months. We also found that short, very intense flares put out the same time-integrated energy as long, less intense flares like that observed in August 2009.Comment: Corresponding authors: E. Massaro, [email protected]; G. Tosti, [email protected]. 15 pages, 4 figures, published in The Astrophysical Journal Letters, Volume 714, Issue 1, pp. L73-L78 (2010

    Fermi observations of TeV-selected AGN

    Full text link
    We report on observations of TeV-selected AGN made during the first 5.5 months of observations with the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope (Fermi). In total, 96 AGN were selected for study, each being either (i) a source detected at TeV energies (28 sources) or (ii) an object that has been studied with TeV instruments and for which an upper-limit has been reported (68 objects). The Fermi observations show clear detections of 38 of these TeV-selected objects, of which 21 are joint GeV-TeV sources and 29 were not in the third EGRET catalog. For each of the 38 Fermi-detected sources, spectra and light curves are presented. Most can be described with a power law of spectral index harder than 2.0, with a spectral break generally required to accommodate the TeV measurements. Based on an extrapolation of the Fermi spectrum, we identify sources, not previously detected at TeV energies, which are promising targets for TeV instruments. Evidence for systematic evolution of the γ\gamma-ray spectrum with redshift is presented and discussed in the context of interaction with the EBL.Comment: 51 pages, 6 figures, accepted for The Astronomical Journa

    Fermi LAT Observations of the Supernova Remnant W28 (G6.4-0.1)

    Full text link
    We present detailed analysis of the two gamma-ray sources,1FGL J1801.3-2322c and 1FGL J1800.5-2359c,that have been found toward the supernova remnant(SNR) W28 with the Large Area Telescope(LAT) on board the Fermi Gamma-ray Space Telescope.1FGL J1801.3-2322c is found to be an extended source within the boundary of SNR W28,and to extensively overlap with the TeV gamma-ray source HESS J1801-233,which is associated with a dense molecular cloud interacting with the supernova remnant.The gamma-ray spectrum measured with LAT from 0.2--100 GeV can be described by a broken power-law function with a break of ~1GeV,and photon indices of 2.09±\pm0.08(stat)±\pm0.28(sys) below the break and 2.74±\pm0.06(stat)±\pm0.09(sys) above the break.Given the clear association between HESS J1801-233 and the shocked molecular cloud and a smoothly connected spectrum in the GeV--TeV band,we consider the origin of the gamma-ray emission in both GeV and TeV ranges to be the interaction between particles accelerated in the SNR and the molecular cloud.The decay of neutral pions produced in interactions between accelerated hadrons and dense molecular gas provide a reasonable explanation for the broadband gamma-ray spectrum. 1FGL J1800.5-2359c, located outside the southern boundary of SNR W28, cannot be resolved.An upper limit on the size of the gamma-ray emission was estimated to be ~16' using events above ~2GeV under the assumption of a circular shape with uniform surface brightness. It appears to coincide with the TeV source HESS J1800-240B,which is considered to be associated with a dense molecular cloud that contains the ultra compact HII region W28A2(G5.89-0.39).We found no significant gamma-ray emission in the LAT energy band at the positions of TeV sources HESS J1800-230A and HESS J1800-230C.The LAT data for HESS J1800-230A combined with the TeV data points indicate a spectral break between 10GeV and 100GeV.Comment: 23 pages, 6 figures. Accepted for publication in the Astrophysical Journal. Corresponding authors: H. Katagiri, H. Tajima, T. Tanaka, and Y. Uchiyam

    Searches for Cosmic-Ray Electron Anisotropies with the Fermi Large Area Telescope

    Full text link
    The Large Area Telescope on board the \textit{Fermi} satellite (\textit{Fermi}-LAT) detected more than 1.6 million cosmic-ray electrons/positrons with energies above 60 GeV during its first year of operation. The arrival directions of these events were searched for anisotropies of angular scale extending from \sim 10 ^\circ up to 90^\circ, and of minimum energy extending from 60 GeV up to 480 GeV. Two independent techniques were used to search for anisotropies, both resulting in null results. Upper limits on the degree of the anisotropy were set that depended on the analyzed energy range and on the anisotropy's angular scale. The upper limits for a dipole anisotropy ranged from 0.5\sim0.5% to 10\sim10%.Comment: 16 pages, 10 figures, accepted for publication in Physical Review D - contact authors: M.N. Mazziotta and V. Vasileio

    Gamma-ray flares from the Crab Nebula

    Full text link
    A young and energetic pulsar powers the well-known Crab Nebula. Here we describe two separate gamma-ray (photon energy >100 MeV) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from PeV (10^15 eV) electrons in a region smaller than 1.4 10^-2 pc. These are the highest energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.Comment: Contact authors: Rolf Buehler,[email protected]; Stefan Funk,[email protected]; Roger Blandford,rdb3@stanford ; 16 pages,2 figure

    Constraints on dark matter models from a Fermi LAT search for high-energy cosmic-ray electrons from the Sun

    Full text link
    During its first year of data taking, the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope has collected a large sample of high-energy cosmic-ray electrons and positrons (CREs). We present the results of a directional analysis of the CRE events, in which we searched for a flux excess correlated with the direction of the Sun. Two different and complementary analysis approaches were implemented, and neither yielded evidence of a significant CRE flux excess from the Sun. We derive upper limits on the CRE flux from the Sun's direction, and use these bounds to constrain two classes of dark matter models which predict a solar CRE flux: (1) models in which dark matter annihilates to CREs via a light intermediate state, and (2) inelastic dark matter models in which dark matter annihilates to CREs.Comment: 18 pages, 8 figures, accepted for publication in Physical Review D - contact authors: Francesco Loparco ([email protected]), M. Nicola Mazziotta ([email protected]) and Jennifer Siegal-Gaskins ([email protected]
    corecore