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ABSTRACT

We report on the γ -ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during
the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope
(LAT) γ -ray spectrum above 0.3 GeV can be well described by a power-law function with photon index Γ = 1.78±
0.02 and average photon flux F (>0.3 GeV) = (7.23 ± 0.16) × 10−8 ph cm−2 s−1. Over this time period, the Fermi-
LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations in the
photon flux (up to a factor ∼3 from the minimum to the maximum flux) but mild spectral variations. The variability
amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in γ -rays
measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results
from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the
F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy
coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign,
Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides
an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband
SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron
proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet
powers but very different characteristics for the blazar emission site.

Key words: acceleration of particles – BL Lacertae objects: general – BL Lacertae objects: individual (Mrk 421) –
galaxies: active – gamma rays: general – radiation mechanisms: non-thermal
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1. INTRODUCTION

Blazars are active galaxies believed to have pairs of relativistic
jets flowing in opposite directions closely aligned to our line of

114 Supported by INFN Padova.
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sight. Their spectral energy distributions (SEDs) are dominated
by beamed jet emission and take the form of two broad non-
thermal components, one at low energies, peaking in the radio
through optical, and one at high energies, peaking in the γ -rays.
Some blazars have been well monitored for decades and along
a wide range of wavelengths. Although there is ample evidence
for the electron synchrotron origin of the low-energy bump, the
existing data do not allow an unambiguous identification of the
radiation mechanism responsible for the high-energy bump. One
reason for this is that the high-energy bump is poorly constrained
due to the lack of observations at energies between ∼0.1 MeV
and 0.3 TeV. This gap was filled to some extent by EGRET on
board the Compton Gamma-Ray Observatory (Hartman et al.
1999). However, its moderate sensitivity and limited observing
time precluded detailed cross-correlation studies between γ -ray
and lower-energy wavebands. On the other hand, the current
generation of TeV imaging atmospheric Cherenkov telescopes
(IACTs)—the High Energy Stereoscopic System, the Major
Atmospheric Gamma Imaging Cherenkov telescope (MAGIC),
and the Very Energetic Radiation Imaging Telescope Array
System, which have good sensitivity at energies as low as
0.1 TeV—did not start scientific operation until 2004, that is,
well after EGRET had stopped operating.

This has changed with the launch of the Fermi Gamma-ray
Space Telescope in 2008 June. In science operation since 2008
August, its Large Area Telescope (LAT) instrument (Atwood
et al. 2009) views the entire sky in the 20 MeV to greater
than 300 GeV range every three hours. The one-year First
LAT Active Galactic Nuclei Catalog (1LAC; Abdo et al.
2010b) contains around 600 blazars, a factor of ∼10 greater
than EGRET detected during its entire operational lifetime.
For the first time, simultaneous observations of Fermi with
the latest generation of IACTs can cover the entire high-
energy bump. Combining this with simultaneous low-energy
observations gives an unprecedented multiwavelength view of
these enigmatic objects.

Blazars found in low states are particularly poorly studied.
This is due in part to the lower sensitivity of previous instru-
ments, and in part to the fact that multiwavelength monitoring
programs, including space-based instruments, are mostly trig-
gered when an object enters a particularly bright state, as ob-
served by ground-based optical telescopes and all-sky monitors
such as the RXTE (Bradt et al. 1993) All Sky Monitor (ASM)
or the Swift (Gehrels et al. 2004) Burst Alert Telescope (BAT).
Having a well-measured low-state SED will be useful for con-
straining models and as a baseline to which other, flaring states
can be compared. This will be crucial for answering many of
the questions regarding these objects.

Markarian 421 (Mrk 421; R.A. = 11h 4m 27.s31, decl. = 38◦
12′ 31.′′8, J2000, redshift z = 0.031) is a high-synchrotron-
peaked (HSP) BL Lac object (according to the classification
presented in Abdo et al. (2010c)) that is one of the brightest
sources in the extragalactic X-ray/TeV sky. Mrk 421 was
actually the first extragalactic object to be discovered as a TeV
emitter (Punch et al. 1992), and one of the fastest varying
γ -ray sources (Gaidos et al. 1996). During the last decade,
there were a large number of publications on the very high
energy (VHE) γ -ray spectrum of this source, which has been
measured with almost all the existing IACTs (Krennrich et al.
2002; Aharonian et al. 2002, 2003, 2005; Albert et al. 2007a;
Acciari et al. 2009). Among other things, we learned that the
source shows evidence for a spectral hardening with increasing
flux. The SED and the multifrequency correlations of Mrk 421

have also been intensively studied in the past through dedicated
multifrequency observations of the source (Katarzyński et al.
2003; Błażejowski et al. 2005; Revillot et al. 2006; Fossati et al.
2008; Horan et al. 2009), which showed a positive but very
complex relation between X-rays and VHE γ -rays, and that a
simple one-zone synchrotron self-Compton (SSC) model with
an electron distribution parameterized with one or two power
laws seemed to describe the collected SED well during the
observing campaigns. During a strong flare in 2008 June, the
source was also detected with the gamma-ray telescope AGILE
and, for the first time, a hint of correlation between optical
and TeV energies was reported by Donnarumma et al. (2009).

Despite the large number of publications on Mrk 421, the
details of the physical processes underlying the blazar emission
are still unknown. The main reasons for this are the sparse
multifrequency data during long periods of time, and the
moderate sensitivity available in the past to study the γ -ray
emission of this source. In addition, as occurs often with studies
of blazars, many of the previous multifrequency campaigns
were triggered by an enhanced flux level at X-rays and/or
γ -rays, and hence many of the previous studies of this source
are biased toward “high-activity” states, where perhaps distinct
physical processes play a dominant role. Moreover, we have very
little information from the MeV–GeV energy range: nine years
of operation with EGRET resulted in only a few viewing periods
with a signal significance of barely five standard deviations
(σ hereafter; Hartman et al. 1999), which precluded detailed
correlation studies with other energy bands.

We took advantage of the new capabilities provided by Fermi-
LAT and the new IACTs, as well as the existing capabilities
for observing at X-ray and lower frequencies, and organized a
multifrequency (from radio to TeV) campaign to observe Mrk
421 over 4.5 months. The observational goal for this campaign
was to sample Mrk 421 every two days, which was accomplished
at optical, X-ray, and TeV energies whenever the weather and/
or technical operations allowed. Fermi-LAT operated in survey
mode and thus the source was constantly observed at γ -ray
energies.

In this paper, we report the overall SED averaged over the
duration of the observing campaign. A more in-depth analysis
of the multifrequency data set (variability, correlations, and
implications) will be given in a forthcoming paper.

This work is organized as follows: In Section 2 we introduce
the LAT instrument and report on the data analysis. In Section 3
we report the flux/spectral variability in the γ -ray range ob-
served by Fermi-LAT during the first 1.5 years of operation, and
compare it with the flux variability obtained with RXTE/ASM
and Swift/BAT, which are also all-sky instruments. In Section 4
we report on the spectrum of Mrk 421 measured by Fermi,
and Section 5 reports on the overall SED collected during the
4.5 month long multiwavelength campaign organized in 2009.
Section 6 is devoted to SED modeling of the multifrequency
data with both a hadronic and a leptonic model, and in Section 7
we discuss the implications of the experimental and modeling
results. Finally, we conclude in Section 8.

2. FERMI-LAT DATA SELECTION AND ANALYSIS

The Fermi-LAT is a γ -ray telescope operating from 20 MeV
to >300 GeV. The instrument is an array of 4 × 4 identical
towers, each one consisting of a tracker (where the photons
are pair-converted) and a calorimeter (where the energies of
the pair-converted photons are measured). The entire instru-
ment is covered with an anticoincidence detector to reject the
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Figure 1. Left: γ -ray flux at photon energies above 0.3 GeV (top) and spectral photon index from a power-law fit (bottom) for Mrk 421 for seven-day-long time
intervals from 2008 August 5 (MJD 54683) to 2009 March 12 (MJD 55248). Vertical bars denote 1σ uncertainties and the horizontal error bars denote the width of
the time interval. The black dashed line and legend show the results from a constant fit to the entire data set. Right: scatter plot of the photon index vs. flux.

(A color version of this figure is available in the online journal.)

charged-particle background. LAT has a large peak effective
area (0.8 m2 for 1 GeV photons), an energy resolution typically
better than 10%, and a field of view of about 2.4 sr with an
angular resolution (68% containment angle) better than 1◦ for
energies above 1 GeV. Further details on the description of LAT
are given by Atwood et al. (2009).

The LAT data reported in this paper were collected from
2008 August 5 (MJD 54683) to 2010 March 12 (MJD 55248).
During this time, the Fermi-LAT instrument operated almost
entirely in survey mode. The analysis was performed with
the Science Tools software package version v9r15p6. Only
events having the highest probability of being photons, those
in the “diffuse” class, were used. The LAT data were extracted
from a circular region with a 10◦ radius centered at the
location of Mrk 421. The spectral fits were performed using
photon energies greater than 0.3 GeV, where the effective
area of the instrument is large (>0.5 m2) and the angular
resolution relatively good (68% containment angle smaller
than 2◦). The spectral fits using energies above 0.3 GeV are
less sensitive to possible contamination from non-accounted
(transient) neighboring sources, and have smaller systematic
errors, at the expense of reducing somewhat the number of
photons from the source. In addition, a cut on the zenith
angle (<105◦) was also applied to reduce contamination from
the Earth limb γ -rays, which are produced by cosmic rays
interacting with the upper atmosphere.

The background model used to extract the γ -ray signal
includes a Galactic diffuse emission component and an isotropic
component. The model that we adopted for the Galactic com-
ponent is given by the file gll_iem_v02.fit, and the isotropic
component, which is the sum of the extragalactic diffuse emis-
sion and the residual charged particle background, is param-
eterized by the file isotropic_iem_v02.115 The normalization
of both components in the background model was allowed to
vary freely during the spectral point fitting. The spectral anal-
yses (from which we derived spectral fits and photon fluxes)
were performed with the post-launch instrument response func-
tions P6_V3_DIFFUSE using an unbinned maximum likelihood
method. The systematic uncertainties in the flux were estimated

115 http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html.

as 10% at 0.1 GeV, 5% at 560 MeV and 20% at 10 GeV and
above.116

3. FLUX AND SPECTRAL VARIABILITY

The sensitivity of Fermi-LAT is sufficient to accurately
monitor the γ -ray flux of Mrk 421 on short timescales (a
few days).117 The measured γ -ray flux above 0.3 GeV and
the photon index from a power-law (PL) fit are shown in
Figure 1. The data span the time from 2008 August 5 (MJD
54683) to 2009 March 12 (MJD 55248) and they are binned
on time intervals of 7 days. The Test Statistic (TS) values118

for the 81 time intervals are typically well in excess of 100
(∼10σ ). The number of intervals with TS < 100 is only
nine (11%). The lowest TS value is 30, which occurs for the
time interval MJD 54899–54906. This low signal significance
is due to the fact that the Fermi-LAT instrument did not
operate during the time interval MJD 54901–54905119 and
hence only three out of the seven days of the interval contain
data. The second lowest TS value is 40, which occurred for
the time interval 54962–54969. During the first 19 months
of Fermi operation, Mrk 421 showed relatively mild γ -ray
flux variations, with the lowest photon flux F (>0.3 GeV) =
(2.6 ± 0.9) × 10−8 cm−2 s−1 (MJD 54906–54913; TS = 53)
and the highest F (>0.3 GeV) = (13.2 ± 1.9) × 10−8 cm−2 s−1

(MJD 55200–55207; TS = 355). A constant fit to the flux
points from Figure 1 gave a χ2 = 159 for 82 degrees of
freedom (probability that the flux was constant is 8 × 10−7),
hence indicating the existence of statistically significant flux
variability. On the other hand, the photon index measured in
seven-day-long time intervals is statistically compatible with
being constant, as indicated by the results of the constant fit to
all the photon index values, which gave χ2 = 87 for 82 degrees of
freedom (NDF; probability of no variability is 0.34). The scatter

116 See http://fermi.gsfc.nasa.gov/ssc/data/analysis/LAT_caveats.html.
117 The number of photons from Mrk 421 (above 0.3 GeV) detected by LAT in
one day is typically about six.
118 The Test Statistic TS = 2Δ log(likelihood) between models with and
without the source is a measure of the probability of having a point γ -ray
source at the location specified. The TS value is related to the significance of
the signal (Mattox et al. 1996).
119 The LAT did not operate during the time interval MJD 54901–54905 due to
an unscheduled shutdown.
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Figure 2. Multifrequency light curves of Mrk 421 with seven-day-long time bins obtained with three all-sky-monitoring instruments: RXTE/ASM (2–10 keV, top),
Swift/BAT (15–50 keV, second from top), and Fermi-LAT for two different energy ranges (0.2–2 GeV, third from top, and >2 GeV, bottom). The light curves cover
the period from 2008 August 5 (MJD 54683) to 2009 March 12 (MJD 55248). Vertical bars denote 1σ uncertainties and horizontal error bars show the width of the
time interval. The black dashed lines and legends show the results from constant fits to the entire data set. The vertical dashed lines denote the time intervals with the
extensive multifrequency campaigns during the 2009 and 2010 seasons.

(A color version of this figure is available in the online journal.)

plot with Flux versus Index in Figure 1 shows that there is no
obvious relation between these two quantities. We quantified the
correlation as prescribed in Edelson & Krolik (1988), obtaining
a discrete correlation function DCF = 0.06 ± 0.11 for a time
lag of zero.

It is interesting to compare the γ -ray fluxes measured by
Fermi with those historical ones recorded by EGRET. From the
third EGRET catalog (Hartman et al. 1999), one can see that
the highest and lowest significantly measured (TS > 25) photon
fluxes are F Max(>0.1 GeV) = (27.1 ± 6.9) × 10−8 cm−2 s−1

(TS = 32) and F Min(>0.1 GeV) = (10.9±2.8)×10−8 cm−2 s−1

(TS = 26), respectively, where F (>0.1 GeV) is the flux above
0.1 GeV. These values do not deviate by more than 2σ from the
P1234 average, F (>0.1 GeV) = (13.8 ± 1.8) × 10−8 cm−2 s−1

(TS = 100), and hence EGRET did not detect significant vari-
ability in the flux from Mrk 421. We can easily obtain the
Fermi F (>0.1 GeV) fluxes by using the flux (F) index (Γ)
values reported in Figure 1 (E > 0.3 GeV): F (>0.1 GeV) =
F (>0.3 GeV) × (0.3/0.1)Γ−1. Applying this simple formal-
ism one gets, for the maximum and minimum fluxes from
Figure 1, F Max(>0.1 GeV) = (25.7 ± 4.7) × 10−8 cm−2 s−1

and F Min(>0.1 GeV) = (5.6 ± 2.4) × 10−8 cm−2 s−1, respec-
tively. The maximum flux measured by EGRET and LAT are
similar, although the minimum fluxes are not. LAT’s larger effec-
tive area compared to EGRET permits detection of lower γ -ray
fluxes. In any case, the EGRET and LAT fluxes are compara-
ble, which may indicate that Mrk 421 is not as variable in the

MeV/GeV range as at other wavelengths, particularly X-rays
and TeV γ -rays (e.g., Wagner 2008).

The Fermi-LAT capability for constant source monitoring is
nicely complemented at X-ray energies by RXTE/ASM and
Swift/BAT, the two other all-sky instruments that can probe
the X-ray activity of Mrk 421 in seven-day-long time intervals.
Figure 2 shows the measured fluxes by ASM in the energy
range 2–10 keV, by BAT at 15–50 keV, and by LAT in two
different energy bands: 0.2–2 GeV (low energy) and >2 GeV
(high energy).120 The low and high Fermi-LAT energy bands
were chosen (among other reasons) to produce comparable
flux errors. This might seem surprising at first glance, given
that the number of detected photons in the low energy band
is about five times larger than in the high energy band (for
a differential energy spectrum parameterized by a PL with
photon index of 1.8, which is the case of Mrk 421). Hence
the number of detected γ -rays decreases from about 50 down to
about 10 for time intervals of seven days. The main reason for
having comparable flux errors in these two energy bands is that
the diffuse background, which follows a PL with index 2.4
for the high galactic latitude of Mrk 421, is about 25 times
smaller in the high energy band. Consequently, signal to noise
∼NS/

√
(NB) remains approximately equal.

120 The fluxes depicted in the light curves were computed fixing the photon
index to 1.78 (average index during the first 1.5 years of Fermi operation) and
fitting only the normalization factor of the PL function.
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Figure 3. Multifrequency light curves of Mrk 421 with three-day-long time bins obtained with three all-sky-monitoring instruments: RXTE/ASM (2–10 keV, top),
Swift/BAT (15–50 keV, second from top), and Fermi-LAT for two different energy ranges (0.2–2 GeV, third from top, and >2 GeV, bottom). The light curves cover the
period from 2009 October 4 to 2010 March 12. Vertical bars denote 1σ uncertainties and horizontal error bars show the width of the time interval. The black dashed
lines and legends show the results from constant fits to the entire data set. The vertical dashed lines denote the beginning of the extensive multifrequency campaign on
Mrk 421 during the 2010 season.

(A color version of this figure is available in the online journal.)

We do not see variations in the LAT hardness ratio (i.e.,
F(>2 GeV)/F(0.2–2 GeV) with the γ -ray flux, but this
is limited by the relatively large uncertainties and the low
γ -ray flux variability during this time interval. The data from
RXTE/ASM were obtained from the ASM Web site.121 We fil-
tered out the data according to the provided prescription on the
ASM Web site, and made a weighted average of all the dwells
(scan/rotation of the ASM Scanning Shadow Cameras lasting
90 s) from the seven-day-long time intervals defined for the
Fermi data. The data from Swift/BAT were gathered from the
BAT Web site.122 We retrieved the daily averaged BAT values
and produced a weighted average for all the seven-day-long time
intervals defined for the Fermi data.

The X-ray flux from Mrk 421 was ∼1.7 counts s−1 in
ASM and ∼1.9 × 10−3 counts s−1 cm−2 in BAT. These fluxes
correspond to ∼22 mCrab in ASM (1 Crab = 75 counts s−1)
and 9 mCrab in BAT (1 Crab = 0.22 counts s−1 cm−2), although
given the recent reports on flux variability from the Crab Nebula
(see Wilson-Hodge et al. 2011; Abdo et al. 2011a; Tavani et al.
2011), the flux from the Crab Nebula is not a good absolute
standard candle any longer and hence those numbers need to be
taken with caveats. One may note that the X-ray activity was
rather low during the first year of Fermi operation. The X-ray
activity increased around MJD 54990 and then increased even
more around MJD 55110. The γ -ray activity seemed to follow

121 See http://xte.mit.edu/ASM_lc.html.
122 See http://swift.gsfc.nasa.gov/docs/swift/results/transients/.

some of the X-ray activity, but the variations in the γ -ray range
are substantially smoother than those observed in X-rays.

Figure 3 shows the same light curves as Figure 2, but only
during the period of time after MJD 55110 (when Mrk 421
showed high X-ray activity) with a time bin of only three days.
During this time period the ASM and BAT flux (integrated
over three days) went beyond 5 counts s−1 and 8 × 10−3

counts s−1 cm−2, respectively, which implies a flux increase
by a factor of five to eight with respect to the average fluxes
during the first year. It is worth noting that these large flux
variations do not have a counterpart at γ -ray energies measured
by Fermi-LAT. The MeV/GeV flux measured by LAT remained
roughly constant, with the exception of a flux increase by a factor
of about two for the time intervals around MJD 55180–55210
and around MJD 55240–55250, which was also seen by RXTE/
ASM and (to some extent) by Swift/BAT.

We quantified the correlation among the light curves shown
in Figures 2 and 3 following the prescription from Edelson
& Krolik (1988). The results are shown in Table 1 for a time
lag of zero, which is the one giving the largest DCF values.
There is no indication of correlated activity at positive/negative
time lags in the DCF versus time plot for any of the used
X-ray/γ -ray bands. The advantage of using the DCF instead
of the Pearson’s correlation coefficient is that the latter does
not consider the error in the individual flux points, while
the former does. In this particular situation it is relevant to
consider these errors because they are sometimes comparable
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Table 1
Discrete Correlation Function (DCF)

Interval ASM-BAT ASM-LAT<2 GeV ASM-LAT>2 GeV BAT-LAT<2 GeV BAT-LAT>2 GeV LAT<2 GeV–LAT>2 GeV

7 days 0.73 ± 0.20 0.28 ± 0.15 0.35 ± 0.14 0.20 ± 0.13 0.26 ± 0.13 0.31 ± 0.14
3 days 0.65 ± 0.13 0.01 ± 0.18 0.15 ± 0.19 −0.03 ± 0.13 0.01 ± 0.13 0.29 ± 0.17

Note. Computed using the flux values reported in Figure 2 (seven-day-long time intervals, first 1.5 years of Fermi operation) and Figure 3 (three-day-long time intervals
during the last five months, where the X-ray activity was high). The DCF values are given for time lag zero. The DCF was computed as prescribed in Edelson & Krolik
(1988).
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Figure 4. Fractional variability parameter for 1.5 year data (2008 August 5–2009
March 12) from three all-sky-monitoring instruments: RXTE/ASM (2–10 keV,
first), Swift/BAT (15–50 keV, second) and Fermi-LAT for two energy ranges
0.2–2 GeV and 2–300 GeV. The fractional variability was computed according
to Vaughan et al. (2003) using the light curves from Figure 2. Vertical bars
denote 1σ uncertainties and horizontal bars indicate the width of each energy
bin.

(A color version of this figure is available in the online journal.)

to the magnitude of the measured flux variations. The main
result is a clear (DCF/DCFerror ∼ 4) correlation between
ASM and BAT, while there is no indication of X-ray/γ -ray
correlation (DCF/DCFerror � 2). The correlation between the
Fermi-LAT fluxes below and above 2 GeV is not significant
(DCF = 0.31 ± 0.14), which is probably due to the low
variability at γ -rays, together with the relatively large flux
errors for the individual seven-day-long and three-day-long time
intervals.

We followed the prescription given in Vaughan et al. (2003) to
quantify the flux variability by means of the fractional variability
parameter, Fvar, as a function of energy. In order to account
for the individual flux measurement errors (σerr,i), we used the
“excess variance” (Nandra et al. 1997; Edelson et al. 2002) as
an estimator of the intrinsic source variance. This is the variance
after subtracting the expected contribution from measurement
errors. For a given energy range, the Fvar is calculated as

Fvar =
√

S2 − 〈
σ 2

err

〉
〈F 〉2

,

where 〈F 〉 is the mean photon flux, S the standard deviation of
the N flux points, and 〈σ 2

err〉 the average mean square error, all
determined for a given energy bin.

Figure 4 shows the derived Fvar values for the four energy
ranges and the time window covered by the light curves shown
in Figure 2. The fractional variability is significant for all energy
ranges, with the X-rays having a substantially higher variability
than the γ -rays.

It is interesting to note that while the PL photon index
variations from Figure 1 were not statistically significant
(χ2/NDF = 87/82), Figure 4 shows that the fractional vari-
ability for photon energies above 2 GeV is higher than that
below 2 GeV; specifically, Fvar(E < 2 GeV) = 0.16 ± 0.04
while Fvar(E > 2GeV) = 0.33 ± 0.04. This apparent discrep-
ancy between the results reported in Figure 1 and the ones
reported in Figure 4 (produced with the flux points from Fig-
ure 2) might be due to the fact that, on timescales of seven days,
the photons below 2 GeV dominate the determination of the PL
photon index in the unbinned likelihood fit. In other words, the
source is bright enough in the energy range 0.3–2 GeV such that
the (relatively few) photons above 2 GeV do not have a large
(statistical) weight in the computation of the PL photon index.
Consequently, we are more sensitive to spectral variations when
doing the analysis separately for these two energy ranges.

One may also note that, besides the larger variability in the
Fermi fluxes above 2 GeV with respect to those below 2 GeV,
the variability in the BAT fluxes (15–50 keV) is also higher than
that of ASM (2–10 keV). The implications of this experimental
result will be further discussed in Section 7.3, in light of the
modeling results presented in Section 6.2.

4. SPECTRAL ANALYSIS UP TO 400 GeV

The LAT instrument allows one to accurately reconstruct the
photon energy over many orders of magnitude. Figure 5 shows
the spectrum of Mrk 421 in the energy range 0.1–400 GeV.
This is the first time that the spectrum of Mrk 421 can be
studied with this level of detail over this large a fraction of
the electromagnetic spectrum, which includes the previously
unexplored energy range 10–100 GeV. The spectrum was
computed using the analysis procedures described in Section 2.
In order to reduced systematics, the spectral fit was performed
using photon energies greater than 0.3 GeV, where the LAT
instrument has good angular resolution and large effective area.
The black line in Figure 5 is the result of a fit with a single
PL function over the energy range 0.3–400 GeV, and the red
contour is the 68% uncertainty of the fit. The data are consistent
with a pure PL function with a photon index of 1.78 ± 0.02. The
black data points are the result of performing the analysis on
differential energy ranges (2.5 bins per decade of energy).123 The
points are well within 1σ–2σ from the fit to the overall spectrum
(black line), which confirms that the entire Fermi spectrum is
consistent with a pure PL function.

However, it is worth noticing that the error bars at the highest
energies are relatively large due to the low photon count. In the

123 Because of the analysis being carried out in small energy ranges, we fixed
the spectral index to 1.78, which is the value obtained when fitting the entire
energy range. We repeated the same procedure fixing the photon indices to
1.5 and 2.0, and found no significant change. Therefore, the results from the
differential energy analysis are not sensitive to the selected photon index
used in the analysis.
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Figure 5. Fermi spectrum of Mrk 421 during the period from 2008 August 5 to 2010 February 20. The black line is the likelihood PL fit, the red contour is the 68%
uncertainty of the fit, and the black data points show the energy fluxes computed on differential energy ranges. The inlay summarizes the unbinned likelihood PL fit
in the energy range 0.3–400 GeV.

(A color version of this figure is available in the online journal.)

energy bins 60–160 GeV and 160–400 GeV, the predicted (by
the model for Mrk 421) numbers of photons detected by LAT
are 33 and 11, respectively. Even though the low background
makes those signals very significant (TS values of 562 and
195, respectively), the statistical uncertainties in the energy flux
values are naturally large and hence they could hide a potential
turnover in the spectrum of Mrk 421 at around 100 GeV.
Indeed, when performing the likelihood analysis on LAT data
above 100 GeV, one obtains a photon flux above 100 GeV of
(5.6±1.1)×10−10 ph cm−2 s−1 with a photon index of 2.6±0.6,
which might suggest a turnover in the spectrum, consistent with
the TeV spectra determined by past observations with IACTs
(Krennrich et al. 2002; Aharonian et al. 2003, 2005; Albert
et al. 2007a). In order to make a statistical evaluation of this
possibility, the LAT spectrum (in the range 0.3–400 GeV) was
fit with a broken power law (BPL) function, obtaining the indices
of 1.77 ± 0.02 and 2.9 ± 1.0 below and above the break energy
of 182 ± 39 GeV, respectively. The likelihood ratio of the BPL
and the PL gave 0.7, which, given the two extra degrees of
freedom for the BPL function, indicates that the BPL function
is not statistically preferred over the PL function. Therefore, the
statistical significance of the LAT data above 100 GeV is not
sufficiently high to evaluate the potential existence of a break
(peak) in the spectrum.

5. SPECTRAL ENERGY DISTRIBUTION OF MRK 421
DURING THE 4.5 MONTH LONG MULTIFREQUENCY

CAMPAIGN FROM 2009

As mentioned in Section 1, we organized a multifrequency
(from radio to TeV photon energies) campaign to monitor
Mrk 421 during a time period of 4.5 months. The observing
campaign started on 2009 January 19 (MJD 54850) and finished
on 2009 June 1 (MJD 54983). The observing strategy for this
campaign was to sample the broadband emission of Mrk 421
every two days, which was accomplished at optical, X-ray,
and TeV energies when the weather and/or technical limitations
allowed. The main goal of this project was to collect an extensive
multifrequency data set that is simultaneous and representative
of the average/typical SED from Mrk 421. Such a data set
can provide additional constraints that will allow us to refine the
emission models, which in turn will provide new insights into the

processes related to the particle acceleration and radiation in this
source. In this section we describe the source coverage during
the campaign, the data analysis for several of the participating
instruments, and finally we report on the averaged SED resulting
from the whole campaign.

5.1. Details of the Campaign: Participating Instruments
and Temporal Coverage

The list of all the instruments that participated in the cam-
paign is reported in Table 2, and the scheduled observations
can be found online.124 We note that in some cases the planned
observations could not be performed due to bad observing con-
ditions, while on other occasions the observations were per-
formed but the data could not be properly analyzed due to tech-
nical problems or rapidly changing weather conditions. Figure 6
shows the time coverage as a function of the energy range for
the instruments/observations used to produce the SED shown
in Figure 8. Apart from the unprecedented energy coverage
(including, for the first time, the GeV energy range from Fermi-
LAT), the source was sampled very uniformly with the various
instruments participating in the campaign and, consequently,
it is reasonable to consider the SED constructed below as the
actual average (typical) SED of Mrk 421 during the time in-
terval covered by this multifrequency campaign. The largest
non-uniformity in the sampling of the source comes from the
Cherenkov telescopes, which are the instruments most sensi-
tive to weather conditions. Moreover, while there are many
radio/optical instruments spread all over the globe, in this
observing campaign only two Cherenkov telescope observa-
tories participated, namely MAGIC and the Fred Lawrence
Whipple Observatory. Hence, the impact of observing condi-
tions was more important to the coverage at the VHE γ -ray en-
ergies. During the time interval MJD 54901–54905, the Fermi
satellite did not operate due to a spacecraft technical problem.
The lack of Fermi-LAT data during this period is clearly seen in
Figure 6.

We note that Figure 6 shows the MAGIC and Whipple cover-
age in VHE γ -ray energies, but only the MAGIC observations

124 See https://confluence.slac.stanford.edu/display/GLAMCOG/Campaign
+on+Mrk421+(Jan+2009+to+May+2009) maintained by D. Paneque.
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Figure 6. Time and energy coverage during the multifrequency campaign. For the sake of clarity, the minimum observing time displayed in the plot was set to half
a day.

Table 2
List of Instruments Participating in the Multifrequency Campaign and Used in the Compilation of the SED Shown in Figure 8

Instrument/Observatory Energy Range Covered Web Site

MAGIC 0.08–5.0 TeV http://wwwmagic.mppmu.mpg.de/
Whipplea 0.4–2.0 TeV http://veritas.sao.arizona.edu/content/blogsection/6/40/
Fermi-LAT 0.1–400 GeV http://www-glast.stanford.edu/index.html
Swift/BAT 14–195 keV http://heasarc.gsfc.nasa.gov/docs/swift/swiftsc.html/
RXTE/PCA 3–32 keV http://heasarc.gsfc.nasa.gov/docs/xte/rxte.html
Swift/XRT 0.3–9.6 keV http://heasarc.gsfc.nasa.gov/docs/swift/swiftsc.html
Swift/UVOT UVW1, UVM2, UVW2 http://heasarc.gsfc.nasa.gov/docs/swift/swiftsc.html
Abastumani (through GASP-WEBT program) R band http://www.oato.inaf.it/blazars/webt/
Lulin (through GASP-WEBT program) R band http://www.oato.inaf.it/blazars/webt/
Roque de los Muchachos (KVA; through GASP-WEBT
program)

R band http://www.oato.inaf.it/blazars/webt/

St. Petersburg (through GASP-WEBT program) R band http://www.oato.inaf.it/blazars/webt/
Talmassons (through GASP-WEBT program) R band http://www.oato.inaf.it/blazars/webt/
Valle d’Aosta (through GASP-WEBT program) R band http://www.oato.inaf.it/blazars/webt/
GRT V, R, B, I bands http://asd.gsfc.nasa.gov/Takanori.Sakamoto/GRT/index.html
ROVOR B, R, V bands http://rovor.byu.edu/
New Mexico Skies R, V bands http://www.nmskies.com/equipment.html/
MITSuME g, Rc, Ic bands http://www.hp.phys.titech.ac.jp/mitsume/index.html
OAGH H, J,K bands http://astro.inaoep.mx/en/observatories/oagh/
WIRO J,K bands http://physics.uwyo.edu/chip/wiro/wiro.html
SMA 225 GHz http://sma1.sma.hawaii.edu/
VLBA 4.8, 8.3, 15.4, 23.8, 43.2 GHz http://www.vlba.nrao.edu/
Noto 8.4, 22.3 GHz http://www.noto.ira.inaf.it/
Metsähovi (through GASP-WEBT program) 37 GHz http://www.metsahovi.fi/
VLBA (through MOJAVE program) 15 GHz http://www.physics.purdue.edu/MOJAVE/
OVRO 15 GHz http://www.ovro.caltech.edu/
Medicina 8.4 GHz http://www.med.ira.inaf.it/index_EN.htm
UMRAO (through GASP-WEBT program) 4.8, 8.0, 14.5 GHz http://www.oato.inaf.it/blazars/webt/
RATAN-600 2.3, 4.8, 7.7, 11.1, 22.2 GHz http://w0.sao.ru/ratan/
Effelsberg (through F-GAMMA program) 2.6, 4.6, 7.8, 10.3, 13.6, 21.7, 31 GHz http://www.mpifr-bonn.mpg.de/div/effelsberg/index_e.html/

Notes. The energy range shown in Column 2 is the actual energy range covered during the Mrk 421 observations, and not the instrument nominal energy range, which
might only be achievable for bright sources and in excellent observing conditions.
a The Whipple spectra were not included in Figure 8. See the text for further comments.

were used to produce the spectra shown in Figure 8. The more
extensive, but less sensitive, Whipple data (shown as gray boxes
in Figure 6) were primarily taken to determine the light curve
(Pichel et al. 2009) and a re-optimization was required to derive
the spectrum, which will be reported elsewhere.

In the following paragraphs we briefly discuss the procedures
used in the analysis of the instruments participating in the
campaign. The analysis of the Fermi-LAT data was described in
Section 2 and the results obtained will be described in detail in
Section 5.2.
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5.1.1. Radio Instruments

Radio data were taken for this campaign from single-dish
telescopes, one millimeter interferometer, and one very long
baseline interferometry (VLBI) array, at frequencies between
2.6 GHz and 225 GHz (see Table 2). The single-dish telescopes
were the Effelsberg 100 m radio telescope, the Medicina 32 m
radio telescope, the Metsähovi 14 m radio telescope, the Noto
32 m radio telescope, the Owens Valley Radio Observatory
(OVRO) 40 m telescope, the 26 m radio telescope at the Univer-
sity of Michigan Radio Astronomy Observatory (UMRAO), and
the 600 meter ring radio telescope RATAN-600. The millimeter
interferometer was the Submillimeter Array (SMA). The NRAO
Very Long Baseline Array (VLBA) was used for the VLBI ob-
servations. For the single-dish instruments and SMA, Mrk 421
is pointlike and unresolved at all observing frequencies. Conse-
quently, the single-dish measurements denote the total flux den-
sity of the source integrated over the whole source extension.
Details of the observing strategy and data reduction are given
by Fuhrmann et al. (2008); Angelakis et al. (2008; F-GAMMA
project), Teräsranta et al. (1998; Metsähovi), Aller et al. (1985;
UMRAO), Venturi et al. (2001; Medicina and Noto), Kovalev
et al. (1999; RATAN-600), and Richards et al. (2011; OVRO).

The VLBA data were obtained at various frequencies (5, 8, 15,
24, and 43 GHz) through various programs (BP143, BK150, and
Monitoring of Jets in Active galactic nuclei with VLBA Exper-
iments (MOJAVE)). The data were reduced following standard
procedures for data reduction and calibration (see, for example,
Lister et al. 2009; Sokolovsky et al. 2010, for a description of the
MOJAVE and BK150 programs, respectively). Since the VLBA
angular resolution is smaller than the radio source extension,
measurements were performed for the most compact core re-
gion, as well as for the total radio structure at parsec scales. The
core is partially resolved by our 15, 24 and 43 GHz observa-
tions according to the resolution criterion proposed by Kovalev
et al. (2005) and Lobanov (2005). The VLBA core size was
determined with two-dimensional Gaussian fits to the measured
visibilities. The FWHM size of the core was estimated to be in
the range of 0.06–0.12 mas at the highest observing frequen-
cies, 15, 24 and 43 GHz. Both the total and the core radio flux
densities from the VLBA data are shown in Figure 8.

5.1.2. Optical and Near-infrared Instruments

The coverage at optical frequencies was provided by various
telescopes around the globe, and this decreased the sensitivity to
weather and technical difficulties and provided good overall cov-
erage of the source, as depicted in Figure 6. Many of the obser-
vations were performed within the GASP-WEBT program (e.g.,
Villata et al. 2008, 2009); this is the case for the data collected by
the telescopes at Abastumani, Lulin, Roque de los Muchachos
(KVA), St. Petersburg, Talmassons, and Valle d’Aosta obser-
vatories (R band). In addition, the Goddard Robotic Telescope
(GRT), the Remote Observatory for Variable Object Research
(ROVOR), the New Mexico Skies telescopes, and the Multi-
color Imaging Telescopes for Survey and Monstrous Explosions
(MITSuME) provided data with various optical filters, while
the Guillermo Haro Observatory (OAGH) and the Wyoming
Infrared Observatory (WIRO) provided data at near-IR wave-
lengths. See Table 2 for further details.

All the optical and near-IR instruments used the calibration
stars reported in Villata et al. (1998), and the Galactic extinction
was corrected with the coefficients given in Schlegel et al.
(1998). The flux from the host galaxy (which is significant only

below ν ∼ 1015 Hz) was estimated using the flux values at the
R band from Nilsson et al. (2007) and the colors reported in
Fukugita et al. (1995), and then subtracted from the measured
flux.

5.1.3. Swift/UVOT

The Swift Ultraviolet and Optical Telescope (UVOT; Roming
et al. 2005) data set includes all the observations performed
during the time interval MJD 54858–54979, which amounts to
46 single pointing observations that were requested to provide
UV coverage during the Mrk 421 multifrequency campaign.
The UVOT telescope cycled through each of three ultraviolet
passbands (UVW1, UVM2, and UVW2). Photometry was
computed using a five-arcsecond source region around Mrk 421
using a custom UVOT pipeline that performs the calibrations
presented in Poole et al. (2008). Moreover, the custom pipeline
also allows for separate, observation-by-observation corrections
for astrometric misalignments (Acciari et al. 2011). A visual
inspection was also performed on each of the observations
to ensure proper data quality selection and correction. The
flux measurements obtained have been corrected for Galactic
extinction EB−V = 0.019 mag (Schlegel et al. 1998) in each
spectral band (Fitzpatrick 1999).

5.1.4. Swift/XRT

All the Swift X-Ray Telescope (XRT; Burrows et al. 2005)
Windowed Timing observations of Mrk 421 carried out from
MJD 54858 to 54979 were used for the analysis; this amounts
to a total of 46 observations that were performed within this
dedicated multi-instrument effort. The XRT data set was first
processed with the XRTDAS software package (v.2.5.0) devel-
oped at the ASI Science Data Center (ASDC) and distributed
by HEASARC within the HEASoft package (v.6.7). Event files
were calibrated and cleaned with standard filtering criteria with
the xrtpipeline task using the latest calibration files available
in the Swift CALDB. The individual XRT event files were
then merged together using the XSELECT package and the
average spectrum was extracted from the summed event file.
Events for the spectral analysis were selected within a circle
with a 20 pixel (∼47′′) radius, which encloses about 95% of
the point-spread function (PSF), centered on the source po-
sition. The background was extracted from a nearby circular
region with a 40 pixel radius. The source spectrum was binned
to ensure a minimum of 20 counts per bin to utilize the χ2

minimization fitting technique. In addition, we needed to apply
a small energy offset (∼40 eV) to the observed energy spec-
trum. The origin of this correction is likely to be CCD charge
traps generated by radiation and high-energy proton damage
(SWIFT-XRT-CALDB-12), which affect mostly the lowest en-
ergies (first 1–2 bins) of the spectrum. The ancillary response
files were generated with the xrtmkarf task applying corrections
for the PSF losses and CCD defects using the cumulative expo-
sure map. The latest response matrices (v.011) available in the
Swift CALDB were used.

The XRT average spectrum in the 0.3–10 keV energy band
was fitted using the XSPEC package. We adopted a log-
parabolic model of the form F (E) = K × ( E

keV )−(Γ+β×log( E
keV ))

(Massaro et al. 2004a, 2004b) with an absorption hydrogen-
equivalent column density fixed to the Galactic value in the
direction of the source, which is 1.61 × 1020 cm−2 (Kalberla
et al. 2005). We found that this model provided a good de-
scription of the observed spectrum, with the exception of
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the 1.4–2.3 keV energy band where spectral fit residuals
were present. These residuals are due to known XRT calibra-
tion uncertainties (SWIFT-XRT-CALDB-12125) and hence we
decided to exclude the 1.4–2.3 keV energy band from the
analysis. The resulting spectral fit gave the following param-
eters: K = (1.839 ± 0.002) × 10−1 ph cm−2 s−1 keV−1,
Γ = 2.178±0.002, and β = 0.391±0.004. The XRT SED data
shown in Figure 8 were corrected for the Galactic absorption
and then binned in 16 energy intervals.

5.1.5. RXTE/PCA

The Rossi X-Ray Timing Explorer (RXTE; Bradt et al. 1993)
satellite performed 59 pointing observations of Mrk 421 dur-
ing the time interval MJD 54851–54972. These observations
amount to a total exposure of 118 ks, which was requested
through a dedicated Cycle 13 proposal to provide X-ray cover-
age for this multi-instrument campaign on Mrk 421.

The data analysis was performed using FTOOLS v6.9 and
following the procedures and filtering criteria recommended by
the RXTE Guest Observer Facility126 after 2007 September. The
average net count rate from Mrk 421 was about 25 counts s−1

per pcu (in the energy range 3–20 keV) with flux variations
typically much smaller than a factor of two. Consequently, the
observations were filtered following the conservative procedures
for faint sources: Earth elevation angle greater than 10◦, pointing
offset less than 0.◦02, time since the peak of the last SAA (South
Atlantic Anomaly) passage greater than 30 minutes, and electron
contamination less than 0.1. For further details on the analysis
of faint sources with RXTE, see the online Cook Book.127 In
the data analysis, in order to increase the quality of the signal,
only the first xenon layer of PCU2 was used. We used the
package pcabackest to model the background and the package
saextrct to produce spectra for the source and background
files and the script128 pcarsp to produce the response matrix.

The Proportional Counter Array (PCA) average spectrum in
the 3–32 keV energy band was fitted using the XSPEC package
using a PL function with an exponential cutoff (cutoffpl) with a
non-variable neutral hydrogen column density NH fixed to the
Galactic value in the direction of the source (1.61 × 1020 cm−2;
Kalberla et al. 2005). However, since the PCA bandpass starts
at 3 keV, the value for NH used does not significantly affect our
results. The resulting spectral fit provided a good representation
of the data for the following parameters: normalization parame-
ter K = (2.77±0.03)×10−1 ph cm−2 s−1 keV−1, photon index
Γ = 2.413 ± 0.015, and cutoff energy Eexp = 22.9 ± 1.3 keV.
The obtained 23 energy bins’ PCA average spectrum is shown
in Figure 8.

5.1.6. Swift/BAT

The Swift/BAT (Barthelmy et al. 2005) analysis results
presented in this paper were derived with all the available data
during the time interval MJD 54850–54983. The spectrum was
extracted following the recipes presented in Ajello et al. (2008,
2009b). This spectrum is constructed by weight averaging the
source spectra extracted over short exposures (e.g., 300 s) and it
is representative of the averaged source emission over the time

125 http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/swift/docs/xrt/
SWIFT-XRT-CALDB-09_v12.pdf
126 http://www.universe.nasa.gov/xrays/programs/rxte/pca/doc/bkg/
bkg-2007-saa/
127 http://heasarc.gsfc.nasa.gov/docs/xte/recipes/cook_book.html
128 The CALDB files are located at http://heasarc.gsfc.nasa.gov/FTP/caldb.

range spanned by the observations. These spectra are accurate to
the mCrab level and the reader is referred to Ajello et al. (2009a)
for more details. The Swift/BAT spectrum in the 15–200 keV
energy range is consistent with a PL function with normalization
parameter K = 0.46 ± 0.27 ph cm−2 s−1 keV−1 and photon
index Γ = 3.0 ± 0.3. The last two flux points are within one
standard deviation from the above-mentioned PL function, and
hence the apparent upturn given by these last two data points in
the spectrum is not significant.

5.1.7. MAGIC

MAGIC is a system of two 17 m diameter IACTs for VHE
γ -ray astronomy located on the Canary Island of La Palma,
at an altitude of 2200 m above sea level. At the time of
the observation, MAGIC-II, the new second telescope of the
current array system, was still in its commissioning phase so
that Mrk 421 was observed in stand-alone mode by MAGIC-I,
which has been in scientific operation since 2004 (Albert et al.
2008). The MAGIC observations were performed in the so-
called wobble mode (Daum 1997). In order to have a low
energy threshold, only observations at zenith angles less than
35◦ were used in this analysis. The bad weather and a shutdown
for a scheduled hardware system upgrade during the period
MJD 54948–54960 (April 27–May 13) significantly reduced
the amount of time that had initially been scheduled for this
campaign. The data were analyzed following the prescription
given by Albert et al. (2008) and Aliu et al. (2009). The
data surviving the quality cuts amounted to a total of 27.7 hr.
The preliminary reconstructed photon fluxes for the individual
observations gave an average flux of about 50% that of the
Crab Nebula, with relatively mild (typically less than a factor
of two) flux variations. The derived spectrum was unfolded
to correct for the effects of the limited energy resolution
of the detector and possible bias (Albert et al. 2007c). The
resulting spectrum was fit satisfactorily with a single log-
parabola function: F (E) = K × (E/0.3 TeV)−(Γ+β·log(E/0.3 TeV)).
The resulting spectral fit gave the following parameters: K =
(6.50 ± 0.13) × 10−10 ph cm−2 s−1 erg−1, Γ = 2.48 ± 0.03,
and β = 0.33 ± 0.06, with χ2/NDF = 11/6. A fit with a
simple PL function gives χ2/NDF = 47/7, which confirmed
the existence of curvature in the VHE spectrum.

5.2. Fermi-LAT Spectra during the Campaign

The Mrk 421 spectrum measured by Fermi-LAT during the
period covered by the multifrequency campaign is shown in
panel (b) of Figure 7. The spectrum can be described with a
single PL function with photon index 1.75 ± 0.03 and photon
flux F (>0.3 GeV) = (6.1 ± 0.3) × 10−8 ph cm−2 s−1, which
is somewhat lower than the average spectrum over the first
1.5 years of Fermi-LAT operation (see Figure 5).

For comparison purposes, we also computed the spec-
tra for the time periods before and after the multifrequency
campaign (the time intervals MJD 54683–54850 and MJD
54983–55248, respectively). These two spectra are shown in
panels (a) and (c) of Figure 7. The two spectra can be de-
scribed very satisfactorily with single PL functions of pho-
ton indices 1.79 ± 0.03 and 1.78 ± 0.02 and photon fluxes
F (>0.3 GeV) = (7.1 ± 0.3) × 10−8 ph cm−2 s−1 and
F (>0.3 GeV) = (7.9 ± 0.2) × 10−8 ph cm−2 s−1. Therefore,
during the multifrequency campaign, Mrk 421 showed a spec-
tral shape that is compatible with the periods before and after
the campaign, and a photon flux which is about 20% lower than
before the campaign and 30% lower than after the campaign.
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Figure 7. Fermi spectra of Mrk 421 for several time intervals of interest.
Panel (a) shows the spectrum for the time period before the multifrequency
campaign (MJD 54683–54850), panel (b) for the time interval corresponding
to the multifrequency campaign (MJD 54850–54983), and panel (c) for the
period after the campaign (MJD 54983–55248). In all panels, the black line
depicts the result of the unbinned likelihood PL fit and the red contours
denote the 68% uncertainty of the PL fit. The legend reports the results from the
unbinned likelihood PL fit in the energy range 0.3–400 GeV.

(A color version of this figure is available in the online journal.)

5.3. The Average Broadband SED during the
Multifrequency Campaign

The average SED of Mrk 421 resulting from our 4.5 month
long multifrequency campaign is shown in Figure 8. This is
the most complete SED ever collected for Mrk 421 or for any
other BL Lac object (although an SED of nearly similar qual-
ity was reported in Abdo et al. 2011b for Mrk 501). At the
highest energies, the combination of Fermi-LAT and MAGIC
allows us to measure, for the first time, the high energy bump
without any gap; both the rising and falling segments of the com-

ponents are precisely determined by the data. The low energy
bump is also measured very well: Swift/BAT and RXTE/PCA
describe its falling part, Swift/XRT describes the peak, and the
Swift/UV and the various optical and IR observations describe
the rising part. The rising tail of this peak was also measured
with various radio instruments. Especially important are the
observations from SMA at 225 GHz, which help connect the
bottom (radio) to the peak (optical/X-rays) of the synchrotron
bump (in the νFν representation). The flux measurements by
VLBA, especially the ones corresponding to the core, provide
us with the radio flux density from a region that is presumably
not much larger than the blazar emission region. Therefore, the
radio flux densities from interferometric observations (from the
VLBA core) are expected to be close upper limits to the radio
continuum of the blazar emission component. On the other hand,
the low frequency radio observations performed with single dish
instruments have a relatively large contamination from the non-
blazar emission and are probably considerably above the energy
flux from the blazar emission region. The only spectral intervals
lacking observations are 1 meV–0.4 eV, and 200 keV–100 MeV,
where the sensitivity of the current instruments is insufficient
to detect Mrk 421. We note, however, that the detailed GeV
coverage together with our broadband, one-zone SSC modeling
strongly constrains the expected emission in the difficult-to-
access 1 meV–0.4 eV bandpass.

During this campaign, Mrk 421 showed low activity and
relatively small flux variations at all frequencies (Paneque 2009).
At VHE (>100 GeV), the measured flux is half the flux from
the Crab Nebula, which is among the lowest fluxes recorded by
MAGIC for this source (Albert et al. 2007a; Aleksić et al. 2010).
At X-rays, the fluxes observed during this campaign are about 15
mCrab, which is about three times higher than the lowest fluxes
measured by RXTE/ASM since 1996. Therefore, because of the
low flux, low (multifrequency) variability, and the large density
of observations, the collected data during this campaign can
be considered an excellent proxy for the low/quiescent state
SED of Mrk 421. It is worth stressing that the good agreement
in the overlapping energies of the various instruments (which
had somewhat different time coverages during the campaign)
supports this hypothesis.

6. SED MODELING

We turn now to modeling the multifrequency data set col-
lected during the 4.5 month campaign in the context of homo-
geneous hadronic and leptonic models. The models discussed
below assume emission mainly from a single, spherical, and
homogeneous region of the jet. This is a good approximation to
model flaring events with observed correlated variability (where
the dynamical timescale does not exceed the flaring timescale
significantly), although it is an oversimplification for quiescent
states, where the measured blazar emission might be produced
by the radiation from different zones characterized by differ-
ent values of the relevant parameters. There are several models
in the literature along those lines (e.g., Ghisellini et al. 2005;
Katarzyński et al. 2008; Graff et al. 2008; Giannios et al. 2009)
but at the cost of introducing more free parameters that are, con-
sequently, less well constrained and more difficult to compare
between models. This is particularly problematic if a “limited”
data set (in time and energy coverage) is employed in the model-
ing, although it could work well if the amount of multifrequency
data is extensive enough to substantially constrain the parame-
ter space. In this work, we adopted the one-zone homogeneous
models for their simplicity as well as for being able to compare
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Figure 8. Spectral energy distribution of Mrk 421 averaged over all the observations taken during the multifrequency campaign from 2009 January 19 (MJD 54850)
to 2009 June 1 (MJD 54983). The legend reports the correspondence between the instruments and the measured fluxes. The host galaxy has been subtracted, and the
optical/X-ray data were corrected for the Galactic extinction. The TeV data from MAGIC were corrected for the absorption in the EBL using the prescription given
in Franceschini et al. (2008).

with previous works. The one-zone homogeneous models are
the most widely used models to describe the SED of high-peaked
BL Lac objects. Furthermore, although the modeled SED is av-
eraged over 4.5 months of observations, the very low observed
multifrequency variability during this campaign, and in particu-
lar the lack of strong keV and GeV variability (see Figures 1 and
2) in these timescales, suggests that the presented data are a good
representation of the average broadband emission of Mrk 421
on timescales of a few days. We therefore feel confident that the
physical parameters required by our modeling to reproduce the
average 4.5 month SED are a good representation of the physical
conditions at the emission region down to timescales of a few
days, which is comparable to the dynamical timescale derived
from the models we discuss. The implications (and caveats) of
the modeling results are discussed in Section 7.

Mrk 421 is at a relatively low redshift (z = 0.031), yet the
attenuation of its VHE MAGIC spectrum by the extragalactic
background light (EBL) is non-negligible for all models and
hence needs to be accounted for using a parameterization for
the EBL density. The EBL absorption at 4 TeV, the highest
energy bin of the MAGIC data (absorption will be less at lower
energies), varies according to the model used from e−τγ γ = 0.29
for the “Fast Evolution” model of Stecker et al. (2006) to
e−τγ γ = 0.58 for the models of Franceschini et al. (2008) and
Gilmore et al. (2009), with most models giving e−τγ γ ∼ 0.5–0.6,
including the model of Finke et al. (2010) and the “best fit”
model of Kneiske et al. (2004). We have de-absorbed the TeV
data from MAGIC with the Franceschini et al. (2008) model,
although most other models give comparable results.

6.1. Hadronic Model

If relativistic protons are present in the jet of Mrk 421,
hadronic interactions, if above the interaction threshold, must

Figure 9. Hadronic model fit components: π0-cascade (black dotted line), π±
cascade (green dash-dotted line), μ-synchrotron and cascade (blue triple-dot-
dashed line), and proton synchrotron and cascade (red dashed line). The black
thick solid line is the sum of all emission components (which also includes the
synchrotron emission of the primary electrons at optical/X-ray frequencies).
The resulting model parameters are reported in Table 3.

be considered for modeling the source emission. For the present
modeling, we use the hadronic Synchrotron-Proton Blazar
(SPB) model of Mücke et al. (2001, 2003). Here, the relativistic
electrons (e) injected in the strongly magnetized (with homoge-
neous magnetic field with strength B) blob lose energy predomi-
nantly through synchrotron emission. The resulting synchrotron
radiation of the primary e component dominates the low energy
bump of the blazar SED, and serves as target photon field for
interactions with the instantaneously injected relativistic pro-
tons (with index αp = αe) and pair (synchrotron-supported)
cascading.

Figures 9 and 10 show a satisfactory (single zone) SPB model
representation of the data from Mrk 421 collected during the
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Figure 10. Expanded view of the high energy bump of the SED data and model
presented in Figure 9.

Table 3
Parameter Values from the SPB Model Fit to the SED from Mrk 421

Shown in Figure 9

Parameter Symbol Value

Doppler factor δ 12
Magnetic field (G) B 50
Comoving blob radius (cm) R 4 × 1014

Power-law index of the injected electron distributiona αe 1.9
Power-law index of the injected proton distributiona αp 1.9
Minimum electron Lorentz factor γe,min 7 × 102

Maximum electron Lorentz factor γe,max 4 × 104

Minimum proton Lorentz factorb γp,min 1
Maximum proton Lorentz factor γp,max 2.3 × 109

Energy density in protons (erg cm−3) u′p 510
Ratio of number of electrons with respect to protons e/p 90

Jet power (erg s−1) Pjet 4.5 × 1044

Notes.
a The model assumes αe = αp , hence only one free parameter.
b The parameter γp,min was fixed to the lowest possible value, 1, and hence this
is actually not a free parameter.

campaign. The corresponding parameter values are reported in
Table 3. In order to fit the optical data, the lowest energy of the
injected electrons is required to be maintained as γe,min ≈ 700
through the steady state. This requires a continuous electron
injection rate density of at least �1.4 cm−3 s−1 to balance the
synchrotron losses at that energy, and is a factor of ∼100 larger
than the proton injection rate. The radio fluxes predicted by the
model are significantly below the observed 8–230 GHz radio
fluxes. This is related to the model being designed to follow
the evolution of the jet emission during γ -ray production where
radiative cooling dominates over adiabatic cooling. Here, the
emission region is optically thick up to ∼100 GHz frequencies,
and the synchrotron cooling break (γe ∼ 10) would be below
the synchrotron-self-absorption turnover. The introduction of
additional, poorly constrained components would be necessary
to account for the subsequent evolution of the jet through
the expansion phase where the synchrotron radiation becomes
gradually optically thin at centimeter wavelengths. This is
omitted in the following modeling.

The measured spectra in the γ -ray band (>1 GeV) is dom-
inated by synchrotron radiation from short-lived muons (pro-
duced during photomeson production) as well as proton syn-
chrotron radiation, with significant overall reprocessing, while

below this energy the π -cascade dominates. The interplay be-
tween muon and proton synchrotron radiation together with
appreciable cascade synchrotron radiation initiated by the pairs
and high energy photons from photomeson production, is re-
sponsible for the observed MeV–GeV flux. The TeV emission
is dominated by the high energy photons from the muon syn-
chrotron component. The source intrinsic model SED predicts
>10 TeV emission on a level of two to three orders of magni-
tude below the sub-TeV flux, which will be further weakened
by γ -ray absorption by the EBL.

The overall required particle and field energy density are
within a factor of five of equipartition, and a total jet power
(as measured in the galaxy rest frame) of 4 × 1044 erg s−1 in
agreement with expectations for a weakly accreting disk of a
BL Lac object (see Cao 2003).

Alternative model fits are possible if the injected electron
and proton components do not have the same PL index. This
“relaxation” of the model would add one extra parameter and
so would allow for improvement in the data-model agreement,
especially around the synchrotron peak and the high energy
bump. It would also allow a larger tolerance on the size region
R, which is considered to be small in the SPB model fit presented
here.

6.2. Leptonic Model

The simplest leptonic model typically used to describe the
emission from BL Lac objects is the one-zone SSC model.
Within this framework, the radio through X-ray emission
is produced by synchrotron radiation from electrons in a
homogeneous, randomly oriented magnetic field (B) and the
γ -rays are produced by inverse Compton scattering of the
synchrotron photons by the same electrons which produce them.
For this purpose, we use the one-zone SSC code described in
Finke et al. (2008). The electron distribution from one-zone SSC
models is typically parameterized with one or two PL functions
(that is, zero breaks or one break) within an electron Lorentz
factor range defined by γmin and γmax (where the electron energy
is γmec

2). We use the same approach in this work. However,
we find that, in order to properly describe the shape of the
measured broadband SED during the 4.5 month long campaign,
the model requires an electron distribution parameterized with
three PL functions (and hence two breaks). In other words, we
must add two extra free parameters to the model: the second
break at γbrk,2 and the index of the third PL function p3. Note
that a second break was also needed to describe the SED of Mrk
501 in the context of the synchrotron/SSC model (Abdo et al.
2011b). An alternative possibility might be to use an electron
distribution parameterized with a curved function such as that
resulting from episodic particle acceleration (Perlman et al.
2005) or the log-parabolic function used in Tramacere et al.
(2009). However, we note that such a parameterization might
have problems describing the highest X-ray energies, where the
current SED data (RXTE/PCA and Swift/BAT) do not show a
large spectrum curvature.

Even though the very complete SED constrains the shape of
the electron distribution quite well, there is still some degeneracy
in the range of allowed values for the general source parameters
R (comoving blob radius), B, and δ (doppler factor). For a given
break in the measured low energy (synchrotron) bump, the break
in the electron distribution γbrk scales as 1/

√
Bδ. In order to

minimize the range of possible parameters, we note that the
emitting region radius is constrained by the variability time, tv ,
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Figure 11. SED of Mrk 421 with two one-zone SSC model fits obtained with
different minimum variability timescales: tvar = 1 day (red curve) and tvar = 1
hr (green curve). The parameter values are reported in Table 4. See the text for
further details.

Table 4
Parameter Values from the One-zone SSC Model Fits to the SED from

Mrk 421 Shown in Figure 11

Parameter Symbol Red Curve Green Curve

Variability timescale (s)a tv,min 8.64 × 104 3.6 × 103

Doppler factor δ 21 50
Magnetic field (G) B 3.8 × 10−2 8.2 × 10−2

Comoving blob radius (cm) R 5.2 × 1016 5.3 × 1015

Low-energy electron spectral index p1 2.2 2.2
Medium-energy electron spectral index p2 2.7 2.7
High-energy electron spectral index p3 4.7 4.7
Minimum electron Lorentz factor γmin 8.0 × 102 4 × 102

Break1 electron Lorentz factor γbrk1 5.0 × 104 2.2 × 104

Break2 electron Lorentz factor γbrk2 3.9 × 105 1.7 × 105

Maximum electron Lorentz factor γmax 1.0 × 108 1.0 × 108

Jet power in magnetic field (erg s−1)bx Pj,B 1.3 × 1043 3.6 × 1042

Jet power in electrons (erg s−1) Pj,e 1.3 × 1044 1.0 × 1044

Jet power in photons (erg s−1)b Pj,ph 6.3 × 1042 1.1 × 1042

Notes.
a The variability timescale was not derived from the model fit, but rather used
as an input (constrain) to the model. See the text for further details.
b The quantities Pj,B and Pj,ph are derived quantities; only Pj,e is a free
parameter in the model.

so that

R = δctv,min

1 + z
� δctv

1 + z
. (1)

During the observing campaign, Mrk 421 was in a rather
low activity state, with multifrequency flux variations occurring
on timescales larger than one day (Paneque 2009), so we used
tv,min = 1 day in our modeling. In addition, given that this
only gives an upper limit on the size scale, and the history of
fast variability detected for this object (e.g., Gaidos et al. 1996;
Giebels et al. 2007), we also performed the SED model using
tv,min = 1 hr. The resulting SED models obtained with these
two variability timescales are shown in Figure 11, with the
parameter values reported in Table 4. The blob radii are large
enough in these models that synchrotron self-absorption (SSA)
is not important; for the tv,min = 1 hr model, νSSA = 3×1010 Hz,
at which frequency a break is barely visible in Figure 11. It is
worth stressing the good agreement between the model and the

data: the model describes very satisfactorily the entire measured
broadband SED. The model goes through the SMA (225 GHz)
data point, as well as through the VLBA (43 GHz) data point
for the partially resolved radio core. The size of the VLBA
core of the 2009 data from Mrk 421 at 15 GHz and 43 GHz
is 
0.06–0.12 mas (as reported in Section 5.1.1) or using the
conversion scale 0.61 pc mas−1 
 1–2 ×1017 cm. The VLBA
size estimation is the FWHM of a Gaussian representing the
brightness distribution of the blob, which could be approximated
as 0.9 times the radius of a corresponding spherical blob
(Marscher 1983). That implies that the size of the VLBA core is
comparable (a factor of about two to four times larger) than that
of the model blob for tvar = 1 day (∼5 × 1016 cm). Therefore,
it is reasonable to consider that the radio flux density from the
VLBA core is indeed dominated by the radio flux density of the
blazar emission. The other radio observations are single dish
measurements and hence integrate over a region that is orders
of magnitude larger than the blazar emission. Consequently, we
treat them as upper limits for the model.

The powers of the different jet components derived from
the model fits (assuming Γ = δ) are also reported in Table 4.
Estimates for the mass of the supermassive black hole in
Mrk 421 range from 2×108 M� to 9×108 M� (Barth et al. 2003;
Wu et al. 2002), and hence the Eddington luminosity should be
between 2.6 × 1046 and 1.2 × 1047 erg s−1, that is, well above
the jet luminosity.

It is important to note that the parameters resulting from
the modeling of our broadband SED differ somewhat from
the parameters obtained for this source of previous works
(Krawczynski et al. 2001; Błażejowski et al. 2005; Revillot
et al. 2006; Albert et al. 2007b; Giebels et al. 2007; Fossati
et al. 2008; Finke et al. 2008; Horan et al. 2009; Acciari et al.
2009). One difference, as already noted, is that an extra break is
required. This could be a feature of Mrk 421 in all states, but we
only now have the simultaneous high quality spectral coverage
to identify it. For the model with tvar = 1 day (which is the
time variability observed during the multifrequency campaign),
additional differences with previous models are in R, which is an
order of magnitude larger, and B, which is an order of magnitude
smaller. This mostly results from the longer variability time in
this low state. Note that using a shorter variability (tvar = 1 hr;
green curve) gives a smaller R and bigger B than most models
of this source.

Another difference in our one-zone SSC model with respect
to previous works relates to the parameter γmin. This parameter
has typically not been well constrained because the single-dish
radio data can only be used as upper limits for the radio flux
from the blazar emission. This means that the obtained value for
γmin (for a given set of other parameters R, B, and δ) can only be
taken as a lower limit: a higher value of γmin is usually possible.
In our modeling we use simultaneous Fermi-LAT data as well as
SMA and VLBA radio data, which we assume are dominated by
the blazar emission. We note that the size of the emission from
our SED model fit (when using tvar ∼1 day) is comparable to
the partially resolved VLBA radio core and hence we think this
assumption is reasonable. The requirement that the model SED
fit goes through those radio points further constrains the model,
and in particular the parameter γmin: a decrease in the value of
γmin would overpredict the radio data, while an increase of γmin
would underpredict the SMA and VLBA core radio data, as
well as the Fermi-LAT spectrum below 1 GeV if the increase in
γmin would be large. We explored model fits with different γmin
and p1, and found that, for the SSC model fit with tvar = 1 day
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Figure 12. SSC model fit of the SED from Mrk 421 presented in Figure 11 (for
tvar ∼1 day), with variations by a factor of two of the parameter γmin, together
with adjustments in the parameter p1 in order to match the experimental data.
See the text for further details.

(red curve in Figure 11), γmin is well constrained within a factor
of two to the value of 8 × 102 (see Figure 12). In the case of
the SSC model with tvar = 1 hr (green curve in Figure 11), if
we make the same assumption that the SMA and VLBA core
emission is dominated by the blazer emission,129 γmin can be
from 2 × 102 up to 103, and still provide a good match to the
SMA/VLBA/optical data and the Fermi-LAT spectrum. In any
case, for any variability timescale, the electron distribution does
not extend down to γmin ∼ 1 to a few, and is constrained within
a factor of two. This is particularly relevant because, for PL
distributions with index p > 2, the jet power carried by the
electrons is dominated by the low energy electrons. Therefore,
the tight constraints on γmin translate into tight constraints on
the jet power carried by the electrons. For instance, in the case
of the model with tvar = 1 hr, using γmin = 103 (instead of
γmin = 4×102) would reduce the jet power carried by electrons
from Pj,e ≈ 1044 erg s−1 down to Pj,e ≈ 8 × 1043 erg s−1.

Another parameter where the results presented here differ
from previous results in the literature is the first PL index p1.
This parameter is dominated by the optical and UV data points
connecting with the Swift/XRT, as well as by the necessity of
matching the model with the Fermi-LAT GeV data. Note that our
model fit also goes over the SMA and VLBA (partially resolved)
core fluxes. Again, since these constraints did not exist (or were
not used) in the past, most of the one-zone SSC model results
(for Mrk 421) in the literature report a p1 value that differs from
the one reported in this work. We note, however, that the values
for the parameters p2 and p3 from our model fits, which are
constrained mostly by the X-ray/TeV data, are actually quite
similar to the parameters p1 and p2 from the previous one-zone
SSC model fits to Mrk 421 data.

7. DISCUSSION

In this section of the paper, we discuss the implications of
the experimental and SED modeling results presented in the
previous sections. As explained at the beginning of Section 6,

129 In the case of tvar ∼ 1 hr, the size of the emission region derived from the
SSC model is one order of magnitude smaller than the size of the VLBA core
and hence the assumption used is somewhat less valid than for the model with
tvar ∼ 1 day.

for simplicity and for the sake of comparison with previously
published results, we modeled the SED with scenarios based on
one-zone homogeneous emitting regions, which are commonly
used to parameterize the broadband emission in blazars. We
note that this is a simplification of the problem; the emission in
blazar jets could be produced in an inhomogeneous or stratified
region, as well as in N independent regions. An alternative and
quite realistic scenario could be a standing shock where particle
acceleration takes place and radiation is being produced as the
jet flow or superluminal knots cross it (e.g., Komissarov & Falle
1997; Marscher et al. 2008). The Lorentz factor of the plasma, as
it flows through the standing (and by necessity oblique) shock,
is the Lorentz factor (and through setting the angle, the Doppler
factor) of the model. We note, however, that, as discussed in
Sikora et al. (1997), the steady-state emission could also be
parameterized by N moving blobs that only radiate when passing
through the standing shock. If at any given moment only one
of these blobs were visible at the observer frame, the one-zone
homogeneous model could be a plausible approximation of the
standing-shock scenario.

In any case, the important thing is that, in the proposed phys-
ical scenario, the stability timescale of the particle accelerating
shock front is not connected to the much shorter cooling times
that give rise to spectral features. For as long as the injection of
particles in the blob and the dynamics of the blob remain un-
changed, the SED, along with the breaks due to radiative cooling
and due to the value of γmin where Fermi acceleration presum-
ably picks up, will remain unchanged. The lack of (substantial)
multifrequency variability observed during this campaign sug-
gests that this is the case, and hence that the 4.5 month averaged
SED is also representative of the broadband emission of SED
during much shorter periods of time that are comparable to the
dynamical timescales derived from the models.

7.1. What are the Spectral Breaks Telling Us?

In our homogenous leptonic model, we reproduce the location
of the νfν peaks by fitting the Lorentz factors γbrk,1 and γbrk,2
(as well as the values of B and δ) where the electron energy
distribution breaks. There is, however, a Lorentz factor where
one typically (in blazar modeling) expects a break in the
electron energy distribution (EED), and this is the Lorentz factor
γc = 3πmec

2/(στB
2R) where the escape time from the source

equals the radiative (synchrotron) cooling time. The fact that
the values of the second break, γbrk,2, fit by our leptonic models
(γbrk,2 = 3.9 × 105, 1.7 × 105) are similar to the Lorentz factors
(γc = 1.6 × 105, 3.3 × 105), where a cooling break in the EED
is expected, strongly suggests that the second break in the EED
derived from the modeling is indeed the cooling break.

The observed spectral shape in both the low and high energy
SED components are reproduced in our homogenous model by
a change of electron index Δp = p3 − p2 = 2.0. Such a large
break in the EED is in contrast to the canonical cooling break
Δp = p3 − p2 = 1.0 that produces a spectral index change of
Δα = 0.5, as predicted for homogenous models (e.g., Longair
1994). An attempt to model the data fixing Δp = p3 −p2 = 1.0
gave unsatisfactory results, and hence this is not an option; a
large spectral break is needed. It would be tempting to speculate
that what we observe is not a cooling break, but rather something
that results from a characteristic of the acceleration process
which is not understood and that, therefore, does not bind us to
the Δp = 1.0 constraint. But we would then have to attribute to
shear fortuity the fact that the Lorentz factors where this break
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takes place are very close to the Lorentz factors where cooling
is actually expected.

The question that naturally arises is why, although the EED
break postulated by the homogeneous model is at nearly the
same energy as the expected cooling break, the spectral break
observed is stronger. Such strong breaks are the rule rather
than the exception in some non-thermal sources like pulsar-
wind nebulae and extragalactic jets (see Reynolds 2009) and
the explanations that have been given relax the assumption
of a homogenous emitting zone, invoking gradients in the
physical quantities describing the system (Marscher 1980). In all
inhomogeneous models, electrons are injected at an inlet and are
advected downstream, suffering radiative losses that result in the
effective size of the source declining with increasing frequency
for a given spectral component. In sources where the beaming
of the emitted radiation is the same throughout the source (this
is the case for non-relativistic flows or for relativistic flows with
small velocity gradients), the spectral break formed is stronger
than the canonical Δα = 0.5 if the physical conditions change
in such a way that the emissivity at a given frequency increases
downstream (Wilson 1975; Coleman & Bicknell 1988; Reynolds
2009).

If, in addition to these considerations, we allow for significant
relativistic velocity gradients, either in the form of a decelerating
flow (Georganopoulos et al. 2003) or the form of a fast spine
and slow sheath flow (Ghisellini et al. 2005), the resulting
differential beaming of the emitted radiation can result in
spectral breaks stronger that Δα ≈ 0.5. Studies of the SEDs of
sources with different jet orientations (e.g., radio galaxies and
blazars) can help to understand the importance of differential
beaming, and therefore of relativistic velocity gradients in these
flows. Because in all these models the volume of the source
emitting at a given frequency is connected to the predicted
spectral break, it should be possible to use the variability
timescale at different frequencies to constrain the physics of
the inhomogeneous flow.

7.2. Physical Properties of Mrk 421

As mentioned in Section 5.3, the SED emerging from the
multifrequency campaign is the most complete and accurate
representation of the low/quiescent state of Mrk 421 to date.
This data provided us with an unprecedented opportunity to
constrain and tune state-of-the-art modeling codes. In Section 6
we modeled the SED within two different frameworks: a
leptonic and a hadronic scenario. Both models are able to
represent the overall SED. As can be seen in Figures 9 and 11,
the leptonic model fits describe the observational data somewhat
better than the hadronic model fits; yet we also note here that,
in this paper, the leptonic model has one more free parameter
than the hadronic model. A very efficient way of discriminating
between the two scenarios would be through multiwavelength
variability observations. It is, however, interesting to discuss the
differences between the two model descriptions we presented
above.

7.2.1. Size and Location of the Emitting Region

The characteristic size to which the size of the emitting region
must be compared is the gravitational radius of the Mrk 421
black hole. For a black hole mass of ∼2–9 × 108 M� (Barth
et al. 2003; Wu et al. 2002), the corresponding size is Rg ≈
0.5–2.0×1014 cm. In the hadronic model the source size can be
as small as R = 4×1014 cm (larger source sizes cannot be ruled

out though; see Section 6.1), within one order of magnitude of
the gravitational radius. The consequence is a dense synchrotron
photon energy density that facilitates frequent interactions with
relativistic protons, resulting in a strong reprocessed/cascade
component which leads to a softening of the spectrum occurring
mostly below 100 MeV. The Fermi-LAT analysis presented in
this paper (which used the instrument response function given
by P6_V3_DIFFUSE) is not sensitive to these low energies and
hence the evaluation of this potential softening in the spectrum
will have to be done with future analyses (and more data).
This will potentially allow the accurate determination of spectra
down to photon energies of ∼20 MeV with LAT.

The leptonic model can accommodate a large range of values
for R, as long as it is not so compact that internal γ γ attenuation
becomes too strong and absorbs the TeV γ -rays. In the particular
case of tvar = 1 day, which is supported by the low activity and
low multifrequency variability observed during the campaign,
R = 5 × 1016 cm, that is two to three orders of magnitude
larger than the gravitational radius. Under the assumption that
the emission comes from the entire (or a large fraction of the)
cross-section of the jet, and assuming a conical jet, the location
of the emitting region would be given by L ∼ R/θ , where
θ ∼ 1/Γ ∼ 1/δ. Therefore, under these assumptions, which are
valid for large distances (L � Rg) when the outflow is fully
formed, the leptonic model would put the emission region at
L ∼ 103–104Rg . We note, however, that since the R for the
leptonic model is considered an upper limit on the blob size
scale (see Equation (1)), this distance should be considered as
an upper limit as well.

7.2.2. Particle Content and Particle Acceleration

The particle contents predicted by the hadronic and leptonic
scenarios are different by construction. In the hadronic scenario
presented in Section 6.1, the dominantly radiating particles are
protons, secondary electron/positron pairs, muons, and pions,
in addition to the primary electrons. In the leptonic scenario, the
dominantly radiating particles are the primary electrons only. In
both cases, the distribution of particles is clearly non-thermal
and acceleration mechanisms are required.

In the leptonic scenario, the PL index p1 = 2.2, which is the
canonical particle spectral index from efficient first-order Fermi
acceleration at the fronts of relativistic shocks, suggests that this
process is at work in Mrk 421. For electrons to be picked up
by first-order Fermi acceleration in perpendicular shocks, their
Larmor radius is required to be significantly larger than the width
of the shock, which for electron–proton plasmas is set by the
Larmor radius of the dynamically dominant particles (electrons
or protons). The large γmin (= 8 × 102) provided by the model
implies that electrons are efficiently accelerated by the Fermi
mechanism only above this energy and that below this energy
they are accelerated by a different mechanism that produces
an extremely hard electron distribution. Such pre-acceleration
mechanisms have been discussed in the past (e.g., Hoshino
et al. 1992). The suggestion that the Fermi mechanism picks
up only after γmin (= 8 × 102) suggests a large thickness of the
shock, which would imply that the shock is dominated by (cold)
protons. We refer the reader to the Fermi-LAT paper on Mrk 501
(Abdo et al. 2011b) for more detailed discussion on this topic.
In addition, in Sections 6.2 and 7.1 we argued that the second
break γbrk,2mec

2 (∼200 GeV) is probably due to synchrotron
cooling (the electrons radiate most of their energy before exiting
the region of size R), but the first break γbrk,1mec

2 (∼25 GeV)
must be related to the acceleration mechanism; and hence the
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leptonic model also requires that electrons above the first break
are accelerated less efficiently. At this point it is interesting
to note that the one-zone SSC model of Mrk 501 in 2009
(where the source was also observed mostly in a quiescent state),
returned γbrk,1mec

2 ∼ 20 GeV with essentially the same spectral
change (0.5) in the electron distribution (Abdo et al. 2011b).
Therefore, the first break (presumably related to the acceleration
mechanism) is of the same magnitude and located approximately
at the same energy for both Mrk 421 and Mrk 501, which might
suggest a common property in the quiescent state of HSP BL
Lac objects detected at TeV energies.

The presence of intrinsic high energy breaks in the EED
electron energy distribution has been observed in several of the
Fermi-LAT blazars (see Abdo et al. 2009, 2010a). As reported in
Abdo et al. (2010a), this characteristic was observed on several
FSRQs, and it is present in some low-synchrotron-peaked BL
Lac objects, and a small number of intermediate-synchrotron-
peaked BL Lac objects; yet it is absent in all 1LAC HSP BL
Lac objects. In this paper (as well as in Abdo et al. 2011b), we
claim that such a feature is also present in HSP BL Lac objects
like Mrk 421 and Mrk 501, yet for those objects, the breaks in
the EED can only be accessed through proper SED modeling
because they are smaller in magnitude, and somewhat smoothed
in the high energy component. We note that, for HSP BL Lac
objects, the high energy bump is believed to be produced by the
EED upscattering seed photons from a wide energy range (the
synchrotron photons emitted by the EED itself) and hence all
the features from the EED are smoothed out. On the other hand,
in the other blazar objects like FSRQs, the high energy bump is
believed to be produced by the EED upscattering (external) seed
photons which have a “relatively narrow” energy range. In this
latter case (external Compton), the features of the EED may be
directly seen in the gamma-ray spectrum. Another interesting
observation is that, at least for one of the FSRQs, 3C 454.3, the
location and the magnitude of the break seems to be insensitive
to flux variations (Ackermann et al. 2010). If the break observed
in Mrk 421 and Mrk 501 is of the same nature as that of 3C 454.3,
we should also expect to see this break at the same location
(∼20 GeV) regardless of the activity level of these sources.

In the hadronic scenario of Figure 9, the blazar emission
comes from a compact (R ∼ a few Rg) highly magnetized emis-
sion region, which should be sufficiently far away from the cen-
tral engine so that the photon density from the accretion disk is
much smaller than the density of synchrotron photons. The gy-
roradius of the highest energy protons (RL = γp,maxmpc2/(eB)
in Gaussian-cgs units) is ∼1.4 × 1014 cm, which is a factor of
about three times smaller than the radius of the spherical region
responsible for the blazar emission (R = 4 × 1014 cm), hence
(barely) fulfilling the Hillas criterium. The small size of the
emitting region, the ultra-high particle energies and the some-
what higher (by factor of about five) particle energy density with
respect to the magnetic energy density imply that this scenario
requires extreme acceleration and confinement conditions.

7.2.3. Energetics of the Jet

The power of the various components of the flow differs in
the two models. In the SPB model, the particle energy density
is about a factor of ∼5 higher than the magnetic field energy
density and the proton energy density dominates over that of
the electrons by a factor of ∼40. In the leptonic model, the
electron energy density dominates over that of the magnetic
field by a factor of 10. By construction, the leptonic model does
not constrain the proton content and hence we need to make

assumptions about the number of protons. It is reasonable to use
charge neutrality to justify a comparable number of electrons
and protons. Under this assumption, the leptonic model predicts
that the energy carried by the electrons (which is dominated by
the parameter γmin ∼ 103) is comparable to that carried by the
(cold) protons.

The overall jet power determined by the hadronic model is
Pjet = 4.4 × 1044 erg s−1. For the day variability timescale
leptonic model, assuming one cold proton per radiating electron,
the power carried by the protons would be 4.4 × 1043 erg s−1,
giving a total jet power of Pjet = 1.9×1044 erg s−1. In both cases,
the computed jet power is a small fraction (∼10−2 to 10−3) of
the Eddington luminosity for the supermassive black hole in
Mrk 421 (2 × 108 M�), which is LEdd ∼ 1046–1047 erg s−1.

7.3. Interpretation of the Reported Variability

In Section 3 we reported the γ -ray flux/spectral variations
of Mrk 421 as measured by the Fermi-LAT instrument during
the first 1.5 years of operation. The flux and spectral index were
determined on seven-day-long time intervals. We showed that,
while the γ -ray flux above 0.3 GeV flux changed by a factor of
about three, the PL photon index variations are consistent with
statistical fluctuations (Figure 1) and the spectral variability
could only be detected when comparing the variability in the
γ -ray flux above 2 GeV with the one from the γ -ray flux below
2 GeV. It is worth pointing out that, in the case of the TeV blazar
Mrk 501, the γ -ray flux above 2 GeV was also found to vary
more than the γ -ray flux below 2 GeV. Yet unlike Mrk 421,
Mrk 501 was less bright at γ -rays and the flux variations above
2 GeV seem to be larger, which produced statistically significant
changes in the photon index from the PL fit in the energy
range 0.3–400 GeV (see Abdo et al. 2011b). In any case, it
is interesting to note that in these two (classical) TeV objects,
the flux variations above a few GeV are larger than the ones
below a few GeV, which might suggest that this is a common
property in HSP BL Lac objects detected at TeV energies.

In Section 3 we also showed (see Figures 2–4) that the X-ray
variability is significantly higher than that in the γ -ray band
measured by Fermi-LAT. In addition, we also saw that the
15–50 keV (BAT) and the 2–10 keV (ASM) fluxes are positively
correlated, and that the BAT flux is more variable than the ASM
flux. In other words, when the source flares in X-rays, the X-ray
spectrum becomes harder.

In order to understand this long baseline X-ray/γ -ray vari-
ability within our leptonic scenario, we decomposed the γ -
ray bump of the SED into the various contributions from the
various segments of the EED, according to our one-zone SSC
model, in a similar way as it was done in Tavecchio et al.
(1998). This is depicted in Figure 13. The contributions of dif-
ferent segments of the EED are indicated by different colors.
As shown, the low-energy electrons, γmin � γ < γbr, 1, which
are emitting synchrotron photons up to the observed frequen-
cies 
5.2 × 1015 Hz, dominate the production of γ -rays up to
the observed photon energies of ∼20 GeV (green line). The
contribution of higher energy electrons with Lorentz factors
γbr, 1 � γ < γbr, 2 is pronounced within the observed syn-
chrotron range 5 × 1015–1017 Hz, and at γ -ray energies from
∼20 GeV up to ∼ TeV (blue line). Finally, the highest energy
tail of the electron energy distribution, γ � γbr, 2, responsible
for the production of the observed X-ray synchrotron continuum
(>0.5 keV) generates the bulk of γ -rays with the observed ener-
gies >TeV (purple line). Because of the electrons upscattering
the broad energy range of synchrotron photons, the emission
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Figure 13. Decomposition of the high energy bump of the SSC continuum
for Mrk 421. The data points are the same as in the high energy bump from
Figure 11. The SSC fit to the average spectrum is denoted by the red solid
curve. Top: contributions of the different segments of electrons Comptonizing
the whole synchrotron continuum (green curve: γmin < γ < γbr, 1; blue curve:
γbr, 1 < γ < γbr, 2; purple curve: γbr, 2 < γ ). Bottom: contributions of the
different segments of electrons (as in the top panel) Comptonizing different
segments of the synchrotron continuum (solid curves: ν < νbr, 1 
 5.3 × 1015

Hz; dashed curves: νbr, 1 < ν < νbr, 2 
 1.3 × 1017 Hz; dotted curves,
corresponding to ν > νbr, 2).

of the different electron segments are somewhat connected, as
shown in the bottom plot of Figure 13. Specifically, the low
energy electrons have also contributed to the TeV photon flux
through the emitted synchrotron photons which are being up-
scattered by the high energy electrons. Hence, changes in the
number of low energy electrons should also have an impact on
the TeV photon flux. However, note that the synchrotron pho-
tons emitted by the high energy electrons, which are upscattered
in the Klein–Nishina regime, do not have any significant con-
tribution to the gamma-ray flux, thus changes in the number
of high energy electrons (say γ > γbr, 2) will not significantly
change the MeV/GeV photon flux.

Within our one-zone SSC scenario, the γ -rays measured by
Fermi-LAT are mostly produced by the low energy electrons
(γ � γbr, 1) while the X-rays seen by ASM and BAT are mostly
produced by the highest energy electrons (γ � γbr, 2). In this
scenario, the significantly higher variability in the X-rays with
respect to that of γ -rays suggests that the flux variations in
Mrk 421 are dominated by changes in the number of the highest
energy electrons. Note that the same trend is observed in the
X-rays (ASM versus BAT) and γ -rays (below versus above

2 GeV); the variability in the emission increases with the energy
of the radiating electrons.

The greater variability in the radiation produced by the highest
energy electrons is not surprising. The cooling timescales of
the electrons from synchrotron and inverse Compton (in the
Thomson regime) losses scale as t ∝ γ −1, and hence it is
expected that the emission from higher energy electrons will be
the most variable. However, since the high energy electrons are
the ones losing their energy fastest, in order to keep the source
emitting in X-rays, injection (acceleration) of electrons up to
the highest energies is needed. This injection (acceleration)
of high energy electrons could well be the origin of the flux
variations in Mrk 421. The details of this high energy electron
injection could be parameterized by changes in the parameters
γbr, 2, p3, and γmax within the framework of the one-zone
SSC model that could result from episodic acceleration events
(Perlman et al. 2005). The characterization of the SED evolution
(and hence SSC parameter variations) will be one of the
prime subjects of the forthcoming publications with the multi-
instrument variability and correlation during the campaigns in
2009130 and 2010.131 We note here that SSC models, both one-
zone and multizone (e.g., Graff et al. 2008), predict a positive
correlation between the X-rays and the TeV γ -rays measured
by IACTs. Indeed, during the 2010 campaign the source was
detected in a flaring state with the TeV instruments (see ATel
2443). Such an X-ray/TeV correlation has been established in
the past for this object (see Maraschi et al. 1999), although the
relation is not simple. Sometimes it is linear and at other times
it is quadratic (e.g., Fossati et al. 2008). The complexity of this
correlation is also consistent with our one-zone SSC model;
the X-rays are produced by electrons with γ > γbr, 2, while
the TeV photons are produced by electrons with γ > γbr, 1, and
is indirectly affected by the electrons with γ < γbr, 1 through the
emitted synchrotron photons that are used as seed photons for the
inverse Compton scattering (see the bottom plot of Figure 13).

We also note that the one-zone SSC scenario presented here
predicts a direct correlation on the basis of simultaneous data
sets between the low energy gamma-rays (from Fermi) and the
SMA and optical frequencies, since both energy bands are pro-
duced by the lowest energy electrons in the source. On the other
hand, our SPB model fit does not require such a strict correlation,
but there could be a loose correlation if electrons and protons
are accelerated together. In particular, a direct correlation with
zero time lag between the millimeter radio frequencies and the
γ -rays is not expected in our SPB model because the radiation at
these two energy bands are produced at different sites. The radi-
ation in the X-ray and γ -ray bands originates from the primary
electrons, and from the protons and secondary particles cre-
ated by proton-initiated processes, respectively. Consequently,
although a loose correlation between the X-ray and γ -ray bands
can be expected if protons and electrons are accelerated together,
a strict correlation with zero time lag is rather unlikely in our
model fit.

During the 2009 and 2010 campaigns, Mrk 421 was very
densely sampled during a very long baseline (4.5 and 6 months
for the 2009 and 2010 campaigns, respectively) and hence these
data sets will provide excellent information for performing a

130 For details of the 2009 campaign, see the URL
https://confluence.slac.stanford.edu/display/GLAMCOG/Campaign
+on+Mrk421+(Jan+2009+to+May+2009).
131 For details of the 2010 campaign, see the URL
https://confluence.slac.stanford.edu/display/GLAMCOG/Campaign
+on+Mrk421+%28December+2009+to+December+2010%29.
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very detailed study of these multiband relations. In particular,
during the campaign in 2010, there were regular observations
with VLBA and SMA, which will allow us to study with a
greater level of detail the relationship between the rising parts
of the low energy and high energy bumps, where the predictions
from the leptonic and hadronic models differ.

8. CONCLUSIONS

In this work, we reported on the γ -ray activity of Mrk 421
as measured by the LAT instrument on board the Fermi
satellite during its first 1.5 years of operation, from 2008
August 5 (MJD 54683) to 2009 March 12 (MJD 55248).
Because of the large leap in capabilities of LAT with respect
to its predecessor, EGRET, this is the most extensive study
of the γ -ray activity of this object at GeV photon energies
to date. The Fermi-LAT spectrum (quantified with a single
PL function) was evaluated for seven-day-long time intervals.
The average photon flux above 0.3 GeV was found to be
(7.23 ± 0.16) × 10−8 ph cm−2 s−1, and the average photon
index 1.78 ± 0.02. The photon flux changed significantly (up to
a factor of about three) while the spectral variations were mild.
The variations in the PL photon index were not statistically
significant, yet the light curves and variability quantification
below and above 2 GeV showed that the high γ -ray energies
vary more than the low energy γ -rays. We found Fvar(E <
2 GeV) = 0.16 ± 0.04 while Fvar(E > 2 GeV) = 0.33 ± 0.04.
We compared the LAT γ -ray activity in these two energy ranges
(0.2–2 GeV and >2 GeV) with the X-ray activity recorded
by the all-sky instruments RXTE/ASM (2–10 keV) and Swift/
BAT (15–50 keV). We found that X-rays are significantly more
variable than γ -rays, with no significant (�2σ ) correlation
between them. We also found that, within the X-ray and γ -ray
energy bands, the variability increased with photon energy. The
physical interpretation of this result within the context of the
one-zone SSC model is that the variability in the radiation
increases with the energy of the electrons that produce them,
which is expected given the radiating timescales for synchrotron
and inverse Compton emission.

We also presented the first results from the 4.5 month long
multifrequency campaign on Mrk 421, which lasted from 2009
January 19 (MJD 54850) to 2009 June 1 (MJD 54983). During
this time period, the source was systematically observed from
radio to TeV energies. Because of the low activity and low
variability shown during this campaign, the compiled data
provided us with the best SED yet of Mrk 421 in the low/
quiescent state.

The broadband SED was modeled with two different scenar-
ios: a leptonic (one-zone SSC) model and a hadronic model
(SPB). Both frameworks are able to describe reasonably well
the average SED, implying comparable powers for the jet emis-
sion, which constitute only a small fraction (∼10−2 to 10−3)
of the Eddington luminosity. However, those models differ on
the predicted environment for the blazar emission: the leptonic
scenario constrains the size to be R � 104Rg , the magnetic
field to B ∼ 0.05 G and particles (electrons) with energies up to
∼5×1013 eV while, if αe = αp, our hadronic scenario implies a
size of the emitting region of a few Rg, a magnetic field B ∼ 50
G and particles (protons) with energies up to ∼2 × 1018 eV,
which requires extreme conditions for particle acceleration and
confinement.

The leptonic scenario suggests that the acceleration of the
radiating particles (electrons) is through diffusive shock accel-
eration in relativistic shocks mediated by cold protons, and that

this mechanism accelerates particles (electrons) less efficiently
above an energy of ∼25 GeV, which is comparable to what was
reported in Abdo et al. (2011b) for another classical TeV blazar,
Mrk 501. In addition, unlike what was observed for Mrk 501, in
the case of Mrk 421 a stronger-than-canonical electron cooling
break was required to reproduce the observed SED, which might
suggest that the blazar emitting region is inhomogeneous.

Within the SSC model (Figure 11), the observed X-ray/
γ -ray variability during the first 1.5 years of Fermi operation
indicates that the flux variations in Mrk 421 are produced by
acceleration of the highest energy electrons, which radiate in the
X-ray and TeV bands, and lose energy, radiating as they do so
in the optical and GeV range. In our hadronic model (Figure 9),
a rather loose correlation between the X-ray and γ -ray bands
is expected if electrons and protons are accelerated together. A
forthcoming publication will report on whether these emission
models can reproduce the multiband flux variations observed
during the intensive campaigns on Mrk 421 performed in 2009
and 2010. Those studies should help us distinguish between
the hadronic and the leptonic scenarios and eventually lead to
a better understanding of one of the fundamental mysteries of
blazars: how flux variations are produced.
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