44 research outputs found

    Loss of heterozygosity of TRIM3 in malignant gliomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malignant gliomas are frequent primary brain tumors associated with poor prognosis and very limited response to conventional chemo- and radio-therapies. Besides sharing common growth features with other types of solid tumors, gliomas are highly invasive into adjacent brain tissue, which renders them particularly aggressive and their surgical resection inefficient. Therefore, insights into glioma formation are of fundamental interest in order to provide novel molecular targets for diagnostic purposes and potential anti-cancer drugs. Human <it>Tripartite motif protein 3 </it>(<it>TRIM3</it>) encodes a structural homolog of <it>Drosophila brain tumor </it>(<it>brat</it>) implicated in progenitor cell proliferation control and cancer stem cell suppression. <it>TRIM3 </it>is located within the loss of allelic heterozygosity (LOH) hotspot of chromosome segment 11p15.5, indicating a potential role in tumor suppression. ...</p> <p>Methods</p> <p>Here we analyze 70 primary human gliomas of all types and grades and report somatic deletion mapping as well as single nucleotide polymorphism analysis together with quantitative real-time PCR of chromosome segment 11p15.5.</p> <p>Results</p> <p>Our analysis identifies LOH in 17 cases (24%) of primary human glioma which defines a common 130 kb-wide interval within the <it>TRIM3 </it>locus as a minimal area of loss. We further detect altered genomic dosage of <it>TRIM3 </it>in two glioma cases with LOH at 11p15.5, indicating homozygous deletions of <it>TRIM3</it>.</p> <p>Conclusion</p> <p>Loss of heterozygosity of chromosome segment 11p15.5 in malignant gliomas suggests <it>TRIM3 </it>as a candidate brain tumor suppressor gene.</p

    A Drosophila Model for EGFR-Ras and PI3K-Dependent Human Glioma

    Get PDF
    Gliomas, the most common malignant tumors of the nervous system, frequently harbor mutations that activate the epidermal growth factor receptor (EGFR) and phosphatidylinositol-3 kinase (PI3K) signaling pathways. To investigate the genetic basis of this disease, we developed a glioma model in Drosophila. We found that constitutive coactivation of EGFR-Ras and PI3K pathways in Drosophila glia and glial precursors gives rise to neoplastic, invasive glial cells that create transplantable tumor-like growths, mimicking human glioma. Our model represents a robust organotypic and cell-type-specific Drosophila cancer model in which malignant cells are created by mutations in signature genes and pathways thought to be driving forces in a homologous human cancer. Genetic analyses demonstrated that EGFR and PI3K initiate malignant neoplastic transformation via a combinatorial genetic network composed primarily of other pathways commonly mutated or activated in human glioma, including the Tor, Myc, G1 Cyclins-Cdks, and Rb-E2F pathways. This network acts synergistically to coordinately stimulate cell cycle entry and progression, protein translation, and inappropriate cellular growth and migration. In particular, we found that the fly orthologs of CyclinE, Cdc25, and Myc are key rate-limiting genes required for glial neoplasia. Moreover, orthologs of Sin1, Rictor, and Cdk4 are genes required only for abnormal neoplastic glial proliferation but not for glial development. These and other genes within this network may represent important therapeutic targets in human glioma

    Buffalo milk fat globules and their biological membrane: in situ structural investigations

    Get PDF
    Milk fat globules and their surrounding biological membrane (the MFGM) are not well understood despite the importance of these milk components in human nutrition and the role of fat globules in determining the properties of dairy products. The objectives of this study were to investigate these unique colloidal assemblies and the microstructure of the MFGM in buffalo milk, which is the second largest global source of dairy products. In-situ structural investigations were performed at room temperature using confocal microscopy with multiple fluorescent probes (Nile Red, Rh-DOPE, the lectin WGA-488). Microscopic observations showed cytoplasmic crescents around fat globules and the heterogeneous distribution of glycosylated molecules and polar lipids with the occurrence of lipid domains. The lipid domains in the buffalo MFGM appear to form by the segregation of lipids with a high phase transition temperature (e.g. sphingomyelin and saturated phosphatidylcholine molecular species) and cholesterol resulting in a gel phase or a Lo phase forming circular domains. The structure of the buffalo MFGM results from a non-random mixing of components, consistent with observations for other species. Structural heterogeneities of the MFGM could affect the processability of buffalo fat globules and the bioavailability of milk lipids

    The gradual disaggregation of casein micelles improves their emulsifying capacities and decreases the stability of dairy emulsions.

    No full text
    International audienceCasein micelles are highly aggregated colloidal particles of 150 to 200 nm diameter constituted of 4 casein molecules (αs1, αs2, β, κ) and minerals (mainly calcium phosphate). Physico-chemical changes alter the casein-mineral interactions and consequently modify their organization. These modifications provide possibilities for the development of new casein aggregates with original structures that deliver novel functionalities. The objective of our work was to investigate the emulsifying and emulsion-stabilizing properties of gradually demineralized casein aggregates in model dairy emulsions. Sodium citrate, a calcium chelating salt, was used to remove calcium and inorganic phosphate from the casein micelle. 4 suspensions of differently demineralized casein aggregates were produced and physico-chemically characterized. 2 different types of milkfat-in-suspension (30:70) emulsions were then prepared to separately study the emulsifying and emulsion-stabilizing capacities of these casein aggregates. Results of atomic absorption spectrometry showed a progressive demineralization of the casein micelles with the increase in sodium citrate concentration (from 24 to 81% of calcium impoverishment). The characterization of the suspensions by asymmetrical flow field flow fractionation pointed out the presence, in every suspension, of 3 distinct populations of particles (micelle-like aggregates - Rh of 110 to 270 nm, smaller aggregates - Rh of 10 to 20 nm and casein monomers). Their respective proportions varied as a function of the amount of added tri sodium citrate. Indeed, the progressive demineralization of the large aggregates induced their dissociation and the release of small casein aggregates and monomers.The emulsions formed with the 4 different casein suspensions at a concentration of 1.20 g.L-1 became thinner in size with the increase in demineralization rate. This result showed an increase in emulsifying capacities for the small aggregates that were able to stabilize larger amounts of suspension/milkfat interface compared to the large ones. Interfacial studies demonstrated that each type of aggregates had similar surface activities and confirmed that the state of aggregation of the casein is the main factor that controlled their emulsifying capacities.Increasing the concentration of casein aggregates in suspensions to 20 g.L-1 enabled to produce 4 emulsions with identical droplet size. These emulsions were less stable against creaming and flocculation when the aggregate demineralization rate increased, but still resist to coalescence under our storage conditions (21 days at 50°C). The characterization of the interfacial casein layers indicated that their properties did not depend on the type of casein aggregates used to form the emulsions. The stability differences observed can therefore be attributed to the nature of the non-adsorbed casein aggregates.Our study revealed that modulating the mineral content of the casein micelles is an interesting tool to understand its role in the formation and the stabilization of emulsion. This strategy can and will be extended to the study of other techno-functionalities

    Dynamics and fluxes of organic carbon and nitrogen in two Guiana Shield river basins impacted by deforestation and mining activities

    No full text
    Deforestation and mining activities have proven to be very damaging to rivers because these activities disturb the environmental characteristics of rivers. Thus, the concentrations of dissolved organic carbon (DOC), particulate organic carbon (POC), particulate nitrogen (PN), and Chlorophyll-a (Chl-a) were measured monthly during 2 hydrological years in the Maroni and Oyapock Rivers to assess the dynamics and fluxes of organic carbon and nitrogen in these 2 Guiana Shield basins, which have been strongly (Maroni) and weakly (Oyapock) impacted by deforestation and mining activities. The 2-year time series show that DOC, POC, PN, and Chl-a concentrations vary seasonally with discharge in both rivers, indicating a hydrologically dominated control. Temporal patterns of DOC, POC, and PN indicate that these variables show maximum concentrations in rising waters due to the yield of organic matter and nitrogen accumulated in soils, which are incorporated into the rivers during rainfall. However, the Chl-a concentrations were at a maximum during low-water stages. The C/N and C/Chl-a ratios also showed a seasonal trend, with lower values during the low water periods due to an increase in algal biomass. During high water, the POC in both rivers is the result of terrestrial organic matter, whereas during low-water autochthonous organic matter can reach up to 34% of the POC. The mean annual fluxes of TOC and PN were higher (4.56 x 10(5) tonC year(-1) and 1.77 x 10(4) tonN year(-1), respectively) in the Maroni River than those (1.84 x 10(5) tonC year(-1) and 0.54 x 10(4) tonN year(-1), respectively) in the Oyapock River. However, the specific fluxes of DOC, POC, and PN from both basins were nearly the same. Although gold mining activities are performed in both basins, there is no conclusive evidence regarding the impact of these activities on the dynamics of organic matter and particulate nitrogen in the Maroni and Oyapock Rivers

    Regulation of the SigH stress response regulon by an essential protein kinase in Mycobacterium tuberculosis

    No full text
    SigH is a key regulator of an extensive transcriptional network that responds to oxidative, nitrosative, and heat stresses in Mycobacterium tuberculosis, and this sigma factor is required for virulence in animal models of infection. SigH is negatively regulated by RshA, its cognate anti-sigma factor, which functions as a stress sensor and redox switch. While RshA provides a direct mechanism for sensing stress and activating transcription, bacteria use several types of signal transduction systems to sense the external environment. M. tuberculosis encodes several serine-threonine protein kinase signaling molecules, 2 of which, PknA and PknB, are essential and have been shown to regulate cell morphology and cell wall synthesis. In this work, we demonstrate that SigH and RshA are phosphorylated in vitro and in vivo by PknB. We show that phosphorylation of RshA, but not SigH, interferes with the interaction of these 2 proteins in vitro. Consistent with this finding, negative regulation of SigH activity by RshA in vivo is partially relieved in strains in which pknB is over-expressed, resulting in increased resistance to oxidative stress. These findings demonstrate an interaction between the signaling pathways mediated by PknB and the stress response regulon controlled by SigH. The intersection of these apparently discrete regulatory systems provides a mechanism by which limited activation of the SigH-dependent stress response in M. tuberculosis can be achieved. Coordination of the PknB and SigH regulatory pathways through phosphorylation of RshA may lead to adaptive responses that are important in the pathogenesis of M. tuberculosis infection

    Identification of Novel Ras-Cooperating Oncogenes in Drosophila melanogaster: A RhoGEF/Rho-Family/JNK Pathway Is a Central Driver of Tumorigenesis

    Get PDF
    We have shown previously that mutations in the apico-basal cell polarity regulators cooperate with oncogenic Ras (RasACT) to promote tumorigenesis in Drosophila melanogaster and mammalian cells. To identify novel genes that cooperate with RasACT in tumorigenesis, we carried out a genome-wide screen for genes that when overexpressed throughout the developing Drosophila eye enhance RasACT-driven hyperplasia. RasACT-cooperating genes identified were Rac1 Rho1, RhoGEF2, pbl, rib, and east, which encode cell morphology regulators. In a clonal setting, which reveals genes conferring a competitive advantage over wild-type cells, only Rac1, an activated allele of Rho1 (Rho1ACT), RhoGEF2, and pbl cooperated with RasACT, resulting in reduced differentiation and large invasive tumors. Expression of RhoGEF2 or Rac1 with RasACT upregulated Jun kinase (JNK) activity, and JNK upregulation was essential for cooperation. However, in the whole-tissue system, upregulation of JNK alone was not sufficient for cooperation with RasACT, while in the clonal setting, JNK upregulation was sufficient for RasACT-mediated tumorigenesis. JNK upregulation was also sufficient to confer invasive growth of RasV12-expressing mammalian MCF10A breast epithelial cells. Consistent with this, HER2+ human breast cancers (where human epidermal growth factor 2 is overexpressed and Ras signaling upregulated) show a significant correlation with a signature representing JNK pathway activation. Moreover, our genetic analysis in Drosophila revealed that Rho1 and Rac are important for the cooperation of RhoGEF2 or Pbl overexpression and of mutants in polarity regulators, Dlg and aPKC, with RasACT in the whole-tissue context. Collectively our analysis reveals the importance of the RhoGEF/Rho-family/JNK pathway in cooperative tumorigenesis with RasACT
    corecore