11 research outputs found

    Millimeter-wave Point Sources from the 2500-square-degree SPT-SZ Survey: Catalog and Population Statistics

    Get PDF
    We present a catalog of emissive point sources detected in the SPT-SZ survey, a contiguous 2530-square-degree area surveyed with the South Pole Telescope (SPT) from 2008 - 2011 in three bands centered at 95, 150, and 220 GHz. The catalog contains 4845 sources measured at a significance of 4.5 sigma or greater in at least one band, corresponding to detections above approximately 9.8, 5.8, and 20.4 mJy in 95, 150, and 220 GHz, respectively. Spectral behavior in the SPT bands is used for source classification into two populations based on the underlying physical mechanisms of compact, emissive sources that are bright at millimeter wavelengths: synchrotron radiation from active galactic nuclei and thermal emission from dust. The latter population includes a component of high-redshift sources often referred to as submillimeter galaxies (SMGs). In the relatively bright flux ranges probed by the survey, these sources are expected to be magnified by strong gravitational lensing. The survey also contains sources consistent with protoclusters, groups of dusty galaxies at high redshift undergoing collapse. We cross-match the SPT-SZ catalog with external catalogs at radio, infrared, and X-ray wavelengths and identify available redshift information. The catalog splits into 3980 synchrotron-dominated and 865 dust-dominated sources and we determine a list of 506 SMGs. Ten sources in the catalog are identified as stars. We calculate number counts for the full catalog, and synchrotron and dusty components, using a bootstrap method and compare our measured counts with models. This paper represents the third and final catalog of point sources in the SPT-SZ survey.Comment: 43 pages, 19 figures, 7 tables. Submitted to AAS Journals 03/05/2020. 03/23/2020 co-author affiliation and acknowledgments update

    Millimeter-wave Point Sources from the 2500 Square Degree SPT-SZ Survey: Catalog and Population Statistics

    Get PDF
    We present a catalog of emissive point sources detected in the SPT-SZ survey, a contiguous 2530 square degree area surveyed with the South Pole Telescope (SPT) from 2008–2011 in three bands centered at 95, 150, and 220 GHz. The catalog contains 4845 sources measured at a significance of 4.5σ or greater in at least one band, corresponding to detections above approximately 9.8, 5.8, and 20.4 mJy in 95, 150, and 220 GHz, respectively. The spectral behavior in the SPT bands is used for source classification into two populations based on the underlying physical mechanisms of compact, emissive sources that are bright at millimeter wavelengths: synchrotron radiation from active galactic nuclei and thermal emission from dust. The latter population includes a component of high-redshift sources often referred to as submillimeter galaxies (SMGs). In the relatively bright flux ranges probed by the survey, these sources are expected to be magnified by strong gravitational lensing. The survey also contains sources consistent with protoclusters, groups of dusty galaxies at high redshift undergoing collapse. We cross-match the SPT-SZ catalog with external catalogs at radio, infrared, and X-ray wavelengths and identify available redshift information. The catalog splits into 3980 synchrotron-dominated and 865 dust-dominated sources, and we determine a list of 506 SMGs. Ten sources in the catalog are identified as stars. We calculate number counts for the full catalog, and synchrotron and dusty components, using a bootstrap method and compare our measured counts with models. This paper represents the third and final catalog of point sources in the SPT-SZ survey

    Consistency of the Infrared Variability of SGR A* over 22 yr

    Get PDF
    International audienceWe report new infrared (IR) measurements of the supermassive black hole at the Galactic Center, Sgr A * , over a decade that was previously inaccessible at these wavelengths. This enables a variability study that addresses variability timescales that are 10 times longer than earlier published studies. Sgr A * was initially detected in the near-infrared (NIR) with adaptive optics observations in 2002. While earlier data exists in form of speckle imaging (1995-2005), Sgr A * was not detected in the initial analysis. Here, we improved our speckle holography analysis techniques. This has improved the sensitivity of the resulting speckle images by up to a factor of three. Sgr A * is now detectable in the majority of epochs covering 7 yr. The brightness of Sgr A * in the speckle data has an average observed K magnitude of 16.0, which corresponds to a dereddened flux density of 3.4 mJy. Furthermore, the flat power spectral density of Sgr A * between ∼80 days and 7 yr shows its uncorrelation in time beyond the proposed single power-law break of ∼245 minutes. We report that the brightness and its variability is consistent over 22 yr. This analysis is based on simulations using the Witzel et al. model to characterize IR variability from 2006 to 2016. Finally, we note that the 2001 periapse of the extended, dusty object G1 had no apparent effect on the NIR emission from accretion flow onto Sgr A *. The result is consistent with G1 being a self-gravitating object rather than a disrupting gas cloud

    Food Omics Validation: Towards Understanding Key Features for Gut Microbiota, Probiotics and Human Health

    No full text
    corecore