285 research outputs found

    Mathematical modelling of hepatic lipid metabolism

    Get PDF
    The aim of this paper is to develop a mathematical model capable of simulating the metabolic response to a variety of mixed meals in fed and fasted conditions with particular emphasis placed on the hepatic triglyceride element of the model. Model validation is carried out using experimental data for the ingestion of three mixed composition meals over a 24-hour period. Comparison with experimental data suggests the model predicts key plasma lipids accurately given a prescribed insulin profile. One counter-intuitive observation to arise from simulations is that liver triglyceride initially decreases when a high fat meal is ingested, a phenomenon potentially explained by the carbohydrate portion of the meal raising plasma insulin

    Investigation of human apoB48 metabolism using a new, integrated non-steady-state model of apoB48 and apoB100 kinetics

    Get PDF
    Background Triglyceride-rich lipoproteins and their remnants have emerged as major risk factors for cardiovascular disease. New experimental approaches are required that permit simultaneous investigation of the dynamics of chylomicrons (CM) and apoB48 metabolism and of apoB100 in very low-density lipoproteins (VLDL). Methods Mass spectrometric techniques were used to determine the masses and tracer enrichments of apoB48 in the CM, VLDL1 and VLDL2 density intervals. An integrated non-steady-state multicompartmental model was constructed to describe the metabolism of apoB48- and apoB100-containing lipoproteins following a fat-rich meal, as well as during prolonged fasting. Results The kinetic model described the metabolism of apoB48 in CM, VLDL1 and VLDL2. It predicted a low level of basal apoB48 secretion and, during fat absorption, an increment in apoB48 release into not only CM but also directly into VLDL1 and VLDL2. ApoB48 particles with a long residence time were present in VLDL, and in subjects with high plasma triglycerides, these lipoproteins contributed to apoB48 measured during fasting conditions. Basal apoB48 secretion was about 50 mg day?1, and the increment during absorption was about 230 mg day?1. The fractional catabolic rates for apoB48 in VLDL1 and VLDL2 were substantially lower than for apoB48 in CM. Discussion This novel non-steady-state model integrates the metabolic properties of both apoB100 and apoB48 and the kinetics of triglyceride. The model is physiologically relevant and provides insight not only into apoB48 release in the basal and postabsorptive states but also into the contribution of the intestine to VLDL pool size and kinetics.Peer reviewe

    Interrelationships Between the Kinetics of VLDL Subspecies and HDL Catabolism in Abdominal Obesity: A Multicenter Tracer Kinetic Study

    Get PDF
    Context: Low plasma high-density lipoprotein (HDL) cholesterol is a major abnormality in abdominal obesity. This relates due to accelerated HDL catabolism, but the underlying mechanism requires further elucidation. The relationships between HDL catabolism and other variables that may be modified in abdominal obesity, such as very low-density lipoprotein (VLDL) subspecies (VLDL1, VLDL2) kinetics, liver fat, or visceral adiposity, remain to be investigated. Objectives: Our aim was to study the associations between HDL apolipoprotein (apo)-A-I fractional catabolic rate (FCR) and the kinetics of VLDL subspecies and estimates of liver and visceral and sc fat. Design: We carried out a multicenter in vivo kinetic study using stable isotopes (deuterated leucine and glycerol) in 62 individuals with abdominal obesity. Results: In a multivariate analysis, among the morphological and biological parameters that may predict apoA-I FCR, liver fat (beta = .400, P = .003), and VLDL1-apoB (beta = .307, P = .020) were independently associated with apoA-I FCR. In a multivariate analysis, among the kinetic parameters, VLDL1-triglycerides (TGs) indirect FCR (beta = .357, P = .001), VLDL1-TG production rate (beta = 0.213, P = .048), and apoA-II FCR (beta = .667, P < .0001) were independently associated with apoA-I FCR. After adjustment for VLDL1-TG production rate, liver fat was no more correlated with apoA-I FCR. No association between apoA-I FCR and visceral fat was observed. Conclusions: We show that VLDL1 is an important independent determinant of apoA-I FCR and more precisely that apoA-I FCR is independently associated with both catabolism and the production of VLDL1-TG. In addition, we show an association between liver fat and apoA-I FCR that is mostly mediated by VLDL1-TG production. These data indicate that, in abdominal obesity, dysfunctional VLDL1 metabolism is an important modulator of HDL apoA-I catabolism

    Plant Stanol Esters Lower Serum Triacylglycerol Concentrations via a Reduced Hepatic VLDL-1 Production

    Get PDF
    Plant stanol esters not only lower low density lipoprotein cholesterol but also have previously been shown to lower serum triacylglycerol (TAG) concentrations, especially in subjects with elevated TAG concentrations. To find a possible explanation, we explored changes in serum lipoprotein profiles, as measured with nuclear magnetic resonance. For this, serum samples from two parallel-designed controlled studies were evaluated before and 8 weeks after the consumption of plant stanol esters. In the first study, dyslipidemic metabolic syndrome subjects participated and in the second study normolipidemic subjects. In metabolic syndrome subjects, plant stanol esters lowered concentrations of large (>60 nm) and medium (35–60 nm) VLDL particles as compared to controls. In normolipidemic subjects, the serum concentration of large VLDL-1 particles was also lowered, although less pronounced. Based on these findings, we hypothesize that the effect of plant stanol esters on serum TAG concentrations origins from a lowered hepatic production of large TAG-rich VLDL-1 particles

    Nutritional Systems Biology Modeling: From Molecular Mechanisms to Physiology

    Get PDF
    The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today's important nutritional research questions poses a challenge for modeling to become truly integrative in the consideration and interpretation of experimental data at widely differing scales of space and time. In this review, we discuss a selection of available modeling approaches and applications relevant for nutrition. We then put these models into perspective by categorizing them according to their space and time domain. Through this categorization process, we identified a dearth of models that consider processes occurring between the microscopic and macroscopic scale. We propose a “middle-out” strategy to develop the required full-scale, multilevel computational models. Exhaustive and accurate phenotyping, the use of the virtual patient concept, and the development of biomarkers from “-omics” signatures are identified as key elements of a successful systems biology modeling approach in nutrition research—one that integrates physiological mechanisms and data at multiple space and time scales

    Effects of TM6SF2 E167K on hepatic lipid and very low-density lipoprotein metabolism in humans

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation. The transmembrane 6 superfamily member 2 (TM6SF2) E167K genetic variant associates with NAFLD and with reduced plasma triglyceride levels in humans. However, the molecular mechanisms underlying these associations remain unclear. We hypothesized that TM65F2 E167K affects hepatic very low-density lipoprotein (VLDL) secretion and studied the kinetics of apolipoprotein 13100 (apoB100) and triglyceride metabolism in VLDL in homozygous subjects. In 10 homozygote TM6SF2 E167K carriers and 10 matched controls, we employed stable-isotope tracer and compartmental modeling techniques to determine apoB100 and triglyceride kinetics in the 2 major VIOL subtractions: large triglyceride-rich VLDL, and smaller, less triglyceride-rich VLDL2. VLDL1-apoB100 production was markedly reduced in homozygote TM6SF2 E167K carriers compared with controls. Likewise. VLDL,-triglyceride production was 35% lower in the TMSSF2 E167K carriers. In contrast, the direct production rates for VLDL2 apo13100 and triglyceride were not different between carriers and controls. In conclusion, the TM6SF2 E167K genetic variant was linked to a specific reduction in hepatic secretion of large triglyceride-rich VLDL1. The impaired secretion of VLDL1 explains the reduced plasma triglyceride concentration and provides a basis for understanding the lower risk of cardiovascular disease associated with the TM6SF2 E167K genetic variant.Peer reviewe

    Effects of PNPLA3 I148M on hepatic lipid and very-low-density lipoprotein metabolism in humans

    Get PDF
    Background The phospholipase domain-containing 3 gene (PNPLA3)-148M variant is associated with liver steatosis but its influence on the metabolism of triglyceride-rich lipoproteins remains unclear. Here, we investigated the kinetics of large, triglyceride-rich very-low-density lipoprotein (VLDL), (VLDL1), and smaller VLDL2 in homozygotes for the PNPLA3-148M variant. Methods and results The kinetics of apolipoprotein (apo) B100 (apoB100) and triglyceride in VLDL subfractions were analysed in nine subjects homozygous for PNPLA3-148M and nine subjects homozygous for PNPLA3-148I (controls). Liver fat was >3-fold higher in the 148M subjects. Production rates for apoB100 and triglyceride in VLDL1 did not differ significantly between the two groups. Likewise, production rates for VLDL2-apoB100 and -triglyceride, and fractional clearance rates for both apoB100 and triglyceride in VLDL1 and VLDL2, were not significantly different. Conclusions Despite the higher liver fat content in PNPLA3 148M homozygotes, there was no increase in VLDL production. Equally, VLDL production was maintained at normal levels despite the putative impairment in cytosolic lipid hydrolysis in these subjects.Peer reviewe

    The effects of insulin resistance on individual tissues: an application of a mathematical model of metabolism in humans

    Get PDF
    Whilst the human body expends energy constantly, the human diet consists of a mix of carbohydrates and fats delivered in a discontinuous manner. To deal with this sporadic supply of energy, there are transport, storage and utilisation mechanisms, for both carbohydrates and fats, around all tissues of the body. Insulin-resistant states such as type 2 diabetes and obesity are characterised by reduced efficiency of these mechanisms. Exactly how these insulin-resistant states develop, for example whether there is an order in which tissues become insulin resistant, is an active area of research with the hope of gaining a better overall understanding of insulin resistance. In this paper we use a previously derived system of 12 first-or der coupled differential equations that describe the transport between, and storage in, different tissues of the human body. We briefly revisit the derivation of the model before parametrising the model to account for insulin resistance. We then solve the model numerically, separately simulating each individual tissue as insulin resistant, and discuss and compare these results, drawing three main conclusions. The implications of these results are in accordance with biological intuition. First, insulin resistance in a tissue creates a knock-on effect on the other tissues in the body, whereby they attempt to compensate for the reduced efficiency of the insulin resistant tissue. Secondly, insulin resistance causes a fatty liver; and the insulin resistance of tissues other than the liver can cause fat to accumulate in the liver. Finally, although insulin resistance in individual tissues can cause slightly reduced skeletal-muscle metabolic flexibility, it is when the whole body is insulin resistant that the biggest effect on skeletal muscle flexibility is see

    ApoCIII-Enriched LDL in Type 2 Diabetes Displays Altered Lipid Composition, Increased Susceptibility for Sphingomyelinase, and Increased Binding to Biglycan

    Get PDF
    Objective- Apolipoprotein CIII (apoCIII) is an independent risk factor for cardiovascular disease, but the molecular mechanisms involved are poorly understood. Here, we investigated potential proatherogenic properties of apoCIII-containing LDL from hypertriglyceridemic patients with type 2 diabetes. Research design and methods - LDL was isolated from controls and subjects with type 2 diabetes, and from apoB transgenic mice. LDL-biglycan binding was analyzed with a solid-phase assay using immunoplates coated with biglycan. Lipid composition was analyzed with mass spectrometry. Hydrolysis of LDL by sphingomyelinase was analyzed after labeling plasma LDL with [(3)H]sphingomyelin. ApoCIII isoforms were quantified after isoelectric focusing. Human aortic endothelial cells were incubated with desialylated apoCIII or with LDL enriched with specific apoCIII isoforms. Results- We showed that enriching LDL with apoCIII only induced a small increase in LDL-proteoglycan binding, and this effect was dependent on a functional Site A in apoB100. Our findings indicated that intrinsic characteristics of the diabetic LDL other than apoCIII per se are responsible for further increased proteoglycan binding of diabetic LDL with high endogenous apoCIII, and we showed alterations in the lipid composition of diabetic LDL with high apoCIII. We also demonstrated that high apoCIII increased susceptibility of LDL to hydrolysis and aggregation by SMase. In addition, we demonstrated that sialylation of apoCIII increased with increasing apoCIII content, and that sialylation of apoCIII was essential for its proinflammatory properties. Conclusions- We have demonstrated a number of features of apoCIII-containing LDL from hypertriglyceridemic patients with type 2 diabetes that could explain the proatherogenic role of apoCIII
    corecore