18,714 research outputs found
Observations of thermal ion influxes about the space shuttle
Ion mass spectrometer measurements made as part of the University of Iowa's Plasma Diagnostic Package on the STS-3 and Spacelab 2 Space Shuttle missions sampled a variety of ion composition and collected ion current responses to gas emissions from the vehicle. The only other shuttle ion measurements were made by an Air Force Geophysics Laboratory (AFGL) quadrupole spectrometer flown on STS-4. Gas emissions change the distribution of the incoming plasma through scattering and charge transfer processes. A background flux of contaminant ion species (mostly relating to water) always exists in the near vicinity of the shuttle with a magnitude which is dependent on the look direction of the spectrometer but which varies differently with changes in the angle of attack than that of the ambient ions. There is a near shuttle wake cavity in the contaminant ion distributions which has a different spatial configuration than the wake of the ambient ions. Although water dumps produce the most persistent ion perturbations, the sources for ion current modification were best delineated from measurements made when only one or two of the Reaction Control System thrusters fired for a relatively long duration. Contaminant ion perturbations associated with such firings were observed to persist for the order of a second after the cessation of the firings. The dense thruster plumes are efficient collisional, charge exchange barriers to the passage of ambient ions. Collected ion current perturbations were more evident for firings of the rear verniers, whose plumes scatter off projecting surfaces, than for the nose thrusters. The effect of the Vernier firings was found to depend not only on the location and attitude of the spectrometer with respect to the shuttle and thruster plume direction, but also on the orientation of the local magnetic field with respect to the shuttle velocity
Vacuum fluctuations and the thermodynamics of chiral models
We consider the thermodynamics of chiral models in the mean-field
approximation and discuss the relevance of the (frequently omitted) fermion
vacuum loop. Within the chiral quark-meson model and its Polyakov loop extended
version, we show that the fermion vacuum fluctuations can change the order of
the phase transition in the chiral limit and strongly influence physical
observables. We compute the temperature-dependent effective potential and
baryon number susceptibilities in these models, with and without the vacuum
term, and explore the cutoff and the pion mass dependence of the
susceptibilities. Finally, in the renormalized model the divergent vacuum
contribution is removed using the dimensional regularization.Comment: 9 pages, 5 figure
Evidence for the coexistence of low-dimensional magnetism and long-range order in Ca3CoRhO6
We report the results of neutron powder diffraction studies on the spin-chain
compound Ca3CoRhO6 in the temperature range 3 to 293 K. Bragg peaks due to
magnetic ordering start appearing below about 100 K. The most interesting
observation is that there is a diffuse magnetic peak superimposed over the
strongest magnetic Bragg peak. The diffuse magnetic intensity is observed below
as well above 100 K. This finding provides a new insight into the physics of
this compound as though the low-dimensional magnetic interaction coexists with
long range magnetic order - a novel situation among quasi one-dimensional
oxides.Comment: accepted by Eur. Phys. Let
A foam model highlights the differences of the macro- and microrheology of respiratory horse mucus
Native horse mucus is characterized with micro- and macrorheology and
compared to hydroxyethylcellulose (HEC) gel as a model. Both systems show
comparable viscoelastic properties on the microscale and for the HEC the
macrorheology is in good agreement with the microrheology. For the mucus, the
viscoelastic moduli on the macroscale are several orders of magnitude larger
than on the microscale. Large amplitude oscillatory shear experiments show that
the mucus responds nonlinearly at much smaller deformations than HEC. This
behavior fosters the assumption that the mucus has a foam like structure on the
microscale compared to the typical mesh like structure of the HEC, a model that
is supported by cryogenic-scanning-electron-microscopy (CSEM) images. These
images allow also to determine the relative amount of volume that is occupied
by the pores and the scaffold. Consequently, we can estimate the elastic
modulus of the scaffold. We conclude that this particular foam like
microstructure should be considered as a key factor for the transport of
particulate matter which plays a central role in mucus function with respect to
particle penetration. The mesh properties composed of very different components
are responsible for macroscopic and microscopic behavior being part of
particles fate after landing.Comment: Accepted for publication in the Journal of the Mechanical Behavior of
Biomedical Material
Discovery of the 2010 Eruption and the Pre-Eruption Light Curve for Recurrent Nova U Scorpii
We report the discovery by B. G. Harris and S. Dvorak on JD 2455224.9385
(2010 Jan 28.4385 UT) of the predicted eruption of the recurrent nova U Scorpii
(U Sco). We also report on 815 magnitudes (and 16 useful limits) on the
pre-eruption light curve in the UBVRI and Sloan r' and i' bands from 2000.4 up
to 9 hours before the peak of the January 2010 eruption. We found no
significant long-term variations, though we did find frequent fast variations
(flickering) with amplitudes up to 0.4 mag. We show that U Sco did not have any
rises or dips with amplitude greater than 0.2 mag on timescales from one day to
one year before the eruption. We find that the peak of this eruption occurred
at JD 2455224.69+-0.07 and the start of the rise was at JD 2455224.32+-0.12.
From our analysis of the average B-band flux between eruptions, we find that
the total mass accreted between eruptions is consistent with being a constant,
in agreement with a strong prediction of nova trigger theory. The date of the
next eruption can be anticipated with an accuracy of +-5 months by following
the average B-band magnitudes for the next ~10 years, although at this time we
can only predict that the next eruption will be in the year 2020+-2.Comment: Astronomical Journal submitted, 36 pages, 3 figures, full table
Spectral properties of Bunimovich mushroom billiards
Properties of a quantum mushroom billiard in the form of a superconducting
microwave resonator have been investigated. They reveal unexpected nonuniversal
features such as, e.g., a supershell effect in the level density and a dip in
the nearest-neighbor spacing distribution. Theoretical predictions for the
quantum properties of mixed systems rely on the sharp separability of phase
space - an unusual property met by mushroom billiards. We however find
deviations which are ascribed to the presence of dynamic tunneling.Comment: 4 pages, 7 .eps-figure
Diffractive charged meson pair production
We investigate the possibility to measure the nonforward gluon distribution
function by means of diffractively produced \pi^+\pi^- and K^+K^- pairs in
polarized lepton nucleon scattering. The resulting cross sections are small and
are dominated by the gluonic contribution. We find relatively large spin
asymmetries, both for \pi^+\pi^- and for K^+K^- pairs.Comment: 15 pages, version with changed kinematical cuts, to be pubished in
Phys.Lett.
Eta-mesic nuclei
In this contribution we report on theoretical studies of nuclear
quasi-bound states in few- and many-body systems performed recently by the
Jerusalem-Prague Collaboration [1-5]. Underlying energy-dependent
interactions are derived from coupled-channel models that incorporate the
resonance. The role of self-consistent treatment of the strong
energy dependence of subthreshold amplitudes is discussed. Quite large
downward energy shift together with rapid decrease of the amplitudes
below threshold result in relatively small binding energies and widths of the
calculated nuclear bound states. We argue that the subthreshold behavior
of scattering amplitudes is crucial to conclude whether nuclear
states exist, in which nuclei the meson could be bound and if the
corresponding widths are small enough to allow detection of these
nuclear states in experiment.Comment: 7 pages, 5 figures; presented at HADRON2017, Sept. 25-29, 2017,
Salamanca (Spain); prepared for Proceedings of Scienc
From X-ray dips to eclipse: Witnessing disk reformation in the recurrent nova USco
The 10th recorded outburst of the recurrent eclipsing nova USco was observed
simultaneously in X-ray, UV, and optical by XMM-Newton on days 22.9 and 34.9
after outburst. Two full passages of the companion in front of the nova ejecta
were observed, witnessing the reformation of the accretion disk. On day 22.9,
we observed smooth eclipses in UV and optical but deep dips in the X-ray light
curve which disappeared by day 34.9, then yielding clean eclipses in all bands.
X-ray dips can be caused by clumpy absorbing material that intersects the line
of sight while moving along highly elliptical trajectories. Cold material from
the companion could explain the absence of dips in UV and optical light. The
disappearance of X-ray dips before day 34.9 implies significant progress in the
formation of the disk. The X-ray spectra contain photospheric continuum
emission plus strong emission lines, but no clear absorption lines. Both
continuum and emission lines in the X-ray spectra indicate a temperature
increase from day 22.9 to day 34.9. We find clear evidence in the spectra and
light curves for Thompson scattering of the photospheric emission from the
white dwarf. Photospheric absorption lines can be smeared out during scattering
in a plasma of fast electrons. We also find spectral signatures of resonant
line scattering that lead to the observation of the strong emission lines.
Their dominance could be a general phenomenon in high-inclination systems such
as Cal87.Comment: Submitted to ApJ. 16 pages, 16 figure
- …