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Abstract. Ion mass spectrometer measurements made, as part of the
University of Iowa's Plasma Diagnostic Package, on the STS-3 and

Spacelab 2 Space Shuttle missions sampled a variety of ion composition
and collected ion current responses to gas emissions from the vehicle.

The only other shuttle ion measurements were made by an AFGL quadrupole

spectrometer flown on STS-4. Gas emissions change the distribution of

the incoming plasma through scattering and charge transfer processes. A

background flux of contaminant ion species (mostly relating to water)
always exists in the near vicinity of the shuttle with a magnitude which

is dependent on the look direction of the spectrometer but which varies

differently with changes in the angle of attack than that of the ambient

ions. There is a near shuttle wake cavity in the contaminant ion

distributions which has a different spatial configuration than the wake

of the ambient ions. Although water dumps produce the most persistent
ion perturbations, the sources for ion current modification were best

delineated from measurements made when only one or two of the Reaction

Control System thrusters fired for a relatively long duration.

Contaminant ion perturbations associated with such firings were observed

to persist for the order of a second after the cessation of the firings.

The dense thruster plumes are efficient collisional, charge exchange
barriers to the passage of ambient ions. Collected ion current

perturbations were more evident for firings of the rear verniers, whose
plumes scatter off projecting surfaces, than for the nose thrusters.

The effect of the Vernier firings was found to depend not only on the

location and attitude of the spectrometer with respect to the shuttle

and thruster plume direction, but also on the orientation of the local

magnetic field with respect to the shuttle velocity.

Background

Several space shuttle missions carried experiments to measure the

concentrations and thermal properties of the low energy plasma in the
near vicinity of the vehicle. These observations have shown that the
thermal ion distributions and the ambient ion influxes to collectors in

the vicinity of the spacecraft are affected by gases emitted from the

spacecraft. The exact manner in which the incoming ion fluxes are

modulated depend upon the properties of the gas releases (such as their

composition, source locations and durations), the attitude of the moving
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spacecraft, the local magnetic field direction and of course the
location of the ion current detector with respect to the shuttle and
payloads. In this paper features of this interaction between incoming
ion fluxes and the shuttle's "contaminant" neutral gas environment will
be highlighted by using ion mass spectrometer measurementstaken in the
immediate vicinity of the space shu£tie. Thesemeasurementsserve as a
meansof tracing the dynamics of plasma perturbations in the vicinity of
large space vehicles as well as providing a background for predicting
consequences in the vicinity of even larger gas emitting space
structures such as the space station.

Ion Spectrometer Experiments

Ion composition measurementswere madeby ion mass spectrometers on
three space shuttle missions. An ion-neutral quadrupole mass spectro-
meter was flown by the Ionospheric Disturbances and Modification Branch
of the Air Force Geophysics Laboratory on the STS-4mission in June-July
1982. A Bennett RF ion mass spectrometer supplied from GoddardSpace
Flight Center was flown as part of the University of Iowa's Plasma
Diagnostic Package (PDP)within the NASAOffice of Space Science-1 (OSS-
I) payload on the STS-3 flight in May 1982 and was then reflown as part
of the Spacelab 2 (SL-2) payload on the STS-51Fmission in July-August
1985.

The ion modeof the ion-neutral spectrometer as described by Narcisl
et al. (1983) provided high temporal and goodmass resolution of ion
species from within the near vicinity of the shuttle's open payload bay.
The Bennett ion mass spectrometer although more limited in temporal and
mass resolution was flown for a longer period of time under a more
varied complementof positions- particularly on the SL-2 mission where a
concentrated period of Shuttle operations was focused on Plasma
Diagnostic Package (PDP) science objectives with planned attitude
changes, remote manipulator system (RMS)movementof the PDPand even a
brief PDPfree flight away from the shuttle. In this paper only
observations madewhile the instruments were secured within the open
cargo bay or on the RMSwill be considered. The general range of
altitudes of the shuttle orbits on these three missions fell between
approximately 240 and 320 kilometers, i.e. within the F2 region of the
ionosphere.

Onecharacteristic of these ion spectrometers is the directionality
of their field of view and the resultant dependenceof the collected ion
flux on the average direction and magnitude of the incident ion velocity
with respect to the spectrometer orifice as well as on the incident ion
concentrations. The angle of attack response of the PDPspectrometer
followed that shownin Figure I for the sametype of instrument that was
flown on AtmosphereExplorers C and E. This dependenceon angle of
attack plays a significant role in studies from the shuttle since ion
measurementsare most frequently madewhenshuttle operations and
attitudes are dedicated to other experiments resulting in other than an
optimum ram pointing configuration for the spectrometer. Further, as
will be seen, ions may be flowing relative to the shuttle from a
direction different from that of ram. Henceone must be aware of the
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orientation of the spectrometers with respect to the vehicle's

coordinate system. The ion spectrometer look directions are indicated

in Figure 2 for the 3 shuttle missions when the experiments were

anchored in the bay. On STS-3 (OSS-I) the PDP was secured within the

bay on the rear pallet with its ion spectrometer facing directly toward
the port side of the bay; on STS-4 the spectrometer (as described by

Narcisi et al., 1983) looked over the starboard side wing but was

pitched up by 12°; and on SL-2 the PDP again was on the rear pallet this

time with the spectrometer looking forward. Because of complexities in

the spectrometer response due to off ram angles it is not feasible to
routinely convert the measured ion currents into number densities, so

only raw measured currents of the ion species are used to explore the
vehicle environment.

It is to be noted also that the Bennett ion mass spectrometer flown

on the shuttle missions cycled through 4 sensitivity level mass scans.

These levels were produced by the application of a sequence of 4

retarding potentials on a grid positioned in front of the current

collector to eliminate ion species which have not been resonantly

accelerated in the RF mass selecting portion of the instrument. This is
described more fully in the paper by Grebowsky et al. (1987). The

choice of the step or level of the data to be studied is made based on

whether high mass resolution or high sensitivity is sought - the mass

resolution increases with decreasing sensitivity. In the subsequent
plots of these measurements the sensitivity level will be cited on the

plot without further elaboration. For reference: Level I corresponds

to the least sensitive mode with sensitivity increasing to a maximum on
Level 4.

Quiescent Ion Environment Near the Shuttle

The most notable feature of the near-shuttle thermal ion environment

is the persistence throughout the duration of all the flights of ion

species that are not ambient in origin - most prominently the species

H20+ with lower influxes of HqO +. Figure 3 shows observations made
during the STS-4 mission when-the ion-neutral spectrometer orifice

pointed nearly into the ram direction. A relative influx of water ions

was detected that was consistently about two orders of magnitude below
that of the incoming ambient 0+ ion fluxes. It was noted by Narcisi et

al. (1983) that earlier in this mission, background levels of the water

ions were of the order of 10% indicating a significant falloff with

mission elapsed time.

The SL-2 ion spectrometer observations in the ram direction detected

a similar relative background of incoming water ion currents. One of

the better examples of this was obtained on a PDP dedicated operation in

which the shuttle flew perpendicular to its X axis (i.e., the tail-nose

line) rolling about this axis, while the PDP extended on the RMS away

from the shuttle was synchronously twisted to maintain a fixed

orientation of the PDP to the oncoming ambient plasma velocity. A few

of these twist sequences maintained an ion spectrometer look direction

into ram. These measurements made during the second day of the mission
are depicted in Figure 3. On the ram side of the shuttle where ambient

235



ions have unimpeded access to the spectrometer, the measured water ion

currents were of the order of two magnitudes below that of the

ambients. The other prominent ion displayed, NO + , is common to the

bottomside of the F-layer and in this instance may not be a contaminant

ion. A further survey of the SL data showed a tendency for a decrease

of the fractional occurrence of water ion with time through the mission,

but even at the end of a week's observations the contaminant fluxes were

still between two and three orders of magnitude of those of the ambient

O+ ions.

These observations demonstrate the general presence of a relatively

stable influx of ions around the shuttle which decreases with mission

duration but never disappears. The source of the water ions is accepted

to be a water bearing gas cloud traveling with the shuttle which charge

exchanges with the ambient O+. If the water molecule concentration in

the cloud is dense enough the production of H_O + will also become very

prominent due to charge transfer reactions between the neutral and

ionized water molecules as described by Narcisi (1983) and Narcisi et

al. (1983). The existence of such a cloud has been directly detected by

neutral spectrometers flown on several missions (e.g., Carignan and

Miller, 1983; Narcisi et al., 1983; Wulf and von Zahn, 1986). These

water related ion-neutral reactions are rapid enough to lead to

prominent depletions of local ambient plasma concentrations around space

vehicles (e.g., Mendillo, 1981). It is difficult without a mother-

daughter type of experiment from the space shuttle to determine

quantitatively the magnitude by which the incoming ram flux of ambient

ions is significantly reduced in passing through the quiescent gas

cloud. The occurrence of only a relatively small fractional percentage

of incident water ion fluxes under nominal conditions appears to argue

against a significant depletion of the fluxes impinging upon the vehicle

although Hunton and Calo (1985) have demonstrated that the ion-neutral

collision rates may be rapid enough to produce a change in the incoming

ambient O+ velocity distribution function. Disturbed conditions

however, as will be shown, do exist under which the incoming ion fIuxes

are notably perturbed. The observed decrease of the average water ion

influx with mission elapsed time is anticipated due to the degassing of

the spacecraft. The STS-4 mission apparentIy had the largest

contaminant fluxes initially due to the fact that it was launched

following a severe rainstorm which dampened the spacecraft tiles.

Ion spectrometer measurements on the STS-3 mission could not be used

to evaluate the average ram influx toward the shuttle because the

spectrometer never had the ideal low angle of attack configuration.

However its position on the rear pallet within the bay provided a unique

perspective for exploring ion fluxes generated or scattered low within

the bay. Figure 5 shows the ion measurements made during part of one

STS-3 orbit while the PDP was stowed in the bay. This type of profile

was repeatedly seen on this mission because of the persistence

employment of the same shuttle attitude configuration which was a nose-

to-sun attitude with a shuttle roll period twice the orbital period.

Within the bay the spectrometer was facing directly toward the side of

the shuttle which would effectively shadow part or all of the incoming

ion fluxes to the spectrometer. The only ions with unimpeded access to
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the spectrometer are those incident from the port side from the topside

of the bay. The ion currents collected in this bay configuration did

not increase with decreasing spectrometer angle of attack but maximized

when the incoming ion flow was from behind the spectrometer (negative

azimuth angles in the figure correspond to shuttle motion in the
starboard direction). All the ion species currents tended to track the

variation of the shuttle's pitch angle with the maximum currents seen

when the bay (and not the spectrometer orifice) was facing most directly

into the shuttle velocity direction. In this situation the relative

percentage of water ion current to that of the ambient ions, which is

the order of 10%, cannot be compared to the previously discussed

examples of unobstructed incoming ion fluxes. The buildup of the ion

distributions seen in the bay on the STS-3 mission instead occur in

association with the measured neutral gas pressure buildup in the bay

that is observed as the bay faces more directly into the shuttle
velocity direction (Shawhan et al., 1984).

The STS-3 measurements seen in Figure 5 also demonstrate that in

addition to water related contaminant ion species occurring in the

vicinity of the shuttle, ions such as NO + and 02+ also have a local
production source. These ions can readily be produced by charge

exchange reactions of ambient 0+ ions with neutral molecules of oxygen
and nitrogen which are enhanced in concentration at the shuttle (Wulf

and yon Zahn, 1986). It is to be noted also that an analysis of the
position of mass peaks in the sweep spectra of the instrument in this

STS-3 example indicates that ions are formed or scattered by collisions
within the plasma sheath of the -10 volt potential that exists on a

guard ring surrounding the entrance aperture of the instrument. Hence

the observations are consistent with the presence of not only water
species ions but also molecular oxygen and nitric oxide ions of near

shuttle origin as part of the usual shuttle background generated ion

population. This was also noted from measurements of the spherical

retarding potential analyzer flown on the same mission (Raitt et al.,
1984 and Siskind et al., 1984). Previously Grebowsky et al. (1983)

noted evidence of C02 + ions also, but a further analysis of the
spectrometer response indicated that an instrument harmonic of O+ occurs

at the same telemetry mass location and may have dominated over the
background presence of carbon dioxide ions.

Directional Dependence of Shuttle Ion Influxes

The shuttle ion measurements taken with the instruments pointing in

different directions with respect to the vehicle's velocity show
distinctly different responses between ambient and contaminant ion
species. Narclsi et al. (1983) showed that observations made with the

STS-4 spectrometer off ram did not detect the same relative ambient/

contaminant ion current influxes as were discussed previously for near

ram conditions. At pointing angles from ram between 30 and 40° for

example they noted comparable current magnitudes for both the dominant
and ambient ions. It was noted that the collected number fluxes of the

water ions varied less with changes in angle of attack than did the

ambient O+ - an indication that the H20+ ions_ had higher thermal
velocities than the ambient plasma.
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The angle of attack variation of the Bennett spectrometer (as shown

in Figure I) is not as predominantly affected by the thermal velocity of

the incoming ions as is the quadrupole spectrometer, the field of view

of the former is 180 ° compared to the latter's 30° . The angle of attack

sensitivity of the Bennett device for supersonic incident ion flows is

more dependent on the average component of the incident velocity

perpendicular to the longitudinal axis of the cylindrical spectrometer

compared to the rf resonant velocity along the tube axis. Nevertheless
the relative current ratio of the contaminant and ambient ions measured

with the Bennett rf spectrometer was observed to vary significantly with

the angle of attack of the instrument from the shuttle ram direction.

This is seen for example in Figure 6 which presents SL measurements

during a period when the shuttle was flipping tail-over-nose nose along

its orbital path as depicted in the inset. The O+ current increased

with a decreasing angle between the shuttle velocity and the outward

normal to the spectrometer orifice (which points forward in the bay)

until the instrument was shadowed from the incoming ambient plasma by

the front of the shuttle. The ion species NO + followed a similar trend

insofar as its current peaked coincidently with that of the ambient O+,

but its overall current variation did not parallel that of the oxygen.

This was particularly evident when the bay initially emerged from the

shuttle wake and turned directly into the ram direction. This behavior

supports the conclusion previously arrived at from the in-bay STS-3
observations that there is a contaminant NO + source in addition to an

ambient influx of the same ion species. The other contaminant ion

detected on the orbit depicted in Figure 6, the water ion species, shows

a definite maximum occurring before the ambient O+ influx into the

spectrometer maximized. This water ion behavior is consistent with a

direction of motion different from that of the ambient ionospheric

plasma.

The different behavior of the water and oxygen ions with varying

instrument angle of attack is a coco D feature of the shuttle environ-

ment. Its explanation lays apparently in the presence of the ambient

magnetic field. Water ions formed by the charge exchange between

ambient O+ ions with water molecules in the cloud moving with the

shuttle have the shuttle velocity at the moment of their origin. The

Lorentz force exerted on these ions due to the presence of the earth's

magnetic field causes them to gyrate about the local magnetic field line

rather that moving along with the shuttle. Those contaminant ions

produced upstream of the shuttle can be subsequently intercepted by the

vehicle since these these pick-up ions in the shuttle frame of reference

will have an average flow velocity corresponding to their guiding center

velocity perpendicular to B. This will in general result in their

incidence on the shuttle obliquely From the ram direction as depicted

schematically in Figure 7. The effect will be to produce a wake

configuration behind the shuttle that is different for contaminant and

ambient ions. A similar situation may prevail for other contaminant

moleculars such as NO + although the dynamics will differ due to

differing masses and velocities at their origin.

Eccles (1988) has provided further evidence for the existence of

differing wake configurations for ambient and contaminant ions by doing
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an extensive model calculation of the contaminant ion distributions

incident upon the shuttle. This study applied a model neutral cloud

which charge exchanged with ambient oxygen ions to produce water ions

whose trajectories where electrodynamically modelled in the shuttle
frame of reference. The calculation also included a simple model of the

payload bay configuration to approximate important shadowing effects.

Figure 8 shows the result of one such set of this model's calculations

for conditions characteristic of a particular sequence of three SL-2

shuttle orbits. The ion mass spectrometer measurements made from within

the bay show distinct differences between the ambient and contaminant

ion variations with changing attitude. Using a very approximate angle

of attack and energy dependence for the spectrometer, the study of
Eccles modeled the variations in the relative ion currents that should

be collected by the spectrometer. The model produced water ion current
variations that have a wake boundary offset from that of 0+ ions which

is similar to the observations. Although the calculation, not surpri-

singly due to the complexity of both the instrument response and

spacecraft environment, does not reproduce all aspects of the measure-

ments it does convincingly demonstrate that the contaminant water ions

form an ion source that flows on the average toward the shuttle not from
the ram direction but from a direction normal to the local magnetic

field. Enhanced temperatures of the water ions also are required to

explain the measured relative amplitudes of the current variations.

Water Dump Effects

Excess water generated on the shuttle has to be released periodi-

cally. This is done predominantly by a water relief vent near the
forward bulkhead on the port side of the vehicle. The dump durations

last for the greater part of an hour and release water amounts typically

in the range of 50 to 100 kg. The Flash Evaporator System is another
method used to release water, but will not be considered here since it

has less of an impact on the overall thermal ion distributions detected
by the spectrometer than does a water dump. A further discussion of

details of these operations and their effect on the spacecraft environ-

ment can be found in the study of Pickett et al. (1983).

Since the quiescent ion environment about the shuttle consists

predominantly of ion species that relate to charge transfer processes

with neutral water molecules, it is anticipated that water dumps will

significantly perturb the thermal ion influxes in the vicinity of the

spacecraft. One example of a dump on the STS-3 mission is presented in

Figure 9. In this example the water was released throughout the night

until shortly after dawn along the orbit. The effect of the dump was

only dramatically evident near sunrise when the collected water ion

currents within the bay had magnitudes comparable to those of the
ambient O+ ions. That this is an effect of the dump is clearly

established by the abrupt drop of the water ion current at the moment of

termination of the dump. An effect on the ambient ions is not clearly

evident from the measurements on this one orbit. However, if it is

compared to measurements made predawn on the preceding shuttle orbit

which had the same attitude configuration and which was previously
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considered in Figure 5, it appears that the prominent predawn maximum in
the O+ current is reduced in magnitude during the dump. The choppy

nature of the predawn currents in Figure 9 is the result of the periodic

firing of an electron gun experiment during this time resulting in the

periodic positive charging of the PDP and its spectrometer that repelled

incoming positive ions. One anticipates on the basis of the earlier
discussion that the introduction of more water molecules to the cloud

about the shuttle would lead to a reduction of the incoming ionospheric

oxygen ion fluxes due to scattering and charge transfer reactions.

Another pervasive effect of the cloud of water emitted is also apparent

in the appearance of quantities of H30+ ion currents that are comparable

to those of H_O + - the 18AMU ions associated with the water dump
depicted in Figure 9 occurred coincidentally with nearly identical
currents of 19 AMU ions, the latter of which then fell below the

sensitivity threshold of the instrument after the cessation of the

dump.
Another example of a water dump effect is seen in Figure 10 which

shows ion spectrometer measurements made from within the payload bay on
the SL-2 mission. In this instance the water ion currents during the

dump were almost an order of magnitude greater than those of O+ when the

spectrometer was clearly within the geometrical wake of the shuttle. A
calculation of the direction of influx of water ions in the shuttle

frame of reference perpendicular to the magnetic field showed that they
have a flow direction into the spectrometer. Hence the large

differences in the two species currents can be explained not only as an

enhancement in water ion production but also by differing ambient,

contaminant ion wake configurations. The perturbation by the water

release ceased abruptly after the dusk terminator was crossed and the

attitude of the shuttle was such that the spectrometer orifice was

pointed directly into the spacecraft ram direction. The effects of the

water dump on the ambient ion influx is not clearly evident in this

example since the spectrometer turned away from from the ram direction
at the onset of the dump and then rapidly turned into ram near the

cessation. Hence no fixed attitude frame was available to compare

before and after effects - the previous and following orbits could not

be used because the attitude c0nfiguratio_s were different.
The extra water added to the shuttle environment by the dumps does

have a significant impact on the ion fluxes and Composition in the near

vicinity of the shuttle. However the contaminant ions still appear to

have the s_e trajectories as those produced under quiescent conditions
so that ambient and contaminant ion wake configurations can be similarly
offset from one another in either environment. This is demonstrated in

the last water dump example to be considered which is shown in Figure

11. The onset Of the dump waS_:asSociated with an abrupt increase in the
water ion currents but as noted above it is difficult from one orbit to

determine in detail changes brought about by the water release. The
water ion currents dropped off out of step with the ambient O+ currents

as the bay turned into the shuttle's wake. This is characteristic of
the behavior in the quiescent state. Indeed this orbit is the central

orbit of the sequence of 3 plotted in Figure 8. The preceding and

following orbits were characterized by nearly identical shuttle
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attitudes so the effects of the water dump can be singled out to to be a

factor of 2-3 reduction in observed O+ currents produced by collisions

within the water cloud that occurs in association with a definitely

observed enhancement of water ion currents during the entire dump period

except in the deep wake of the shuttle. However the extra water added

around the shuttle had no pronounced effect on the location of the
contaminant ion or ambient ion wake boundaries.

Thruster Effects

The Reaction Control System (RCS) shuttle engine firings in orbit

have been noted to have an impact on many shuttle plasma measurements

(e.g., Pickett et al., 1983). Unlike the water dumps however, which

occur for prolonged periods of time, the thrusters (particularly the

attitude tweaking verniers) typically fire for fractions of a second and
release directed beams of effluents with velocities of the order of a

few km/s in different directions from the shuttle depending on the

particular thrusters being fired. Because sequences of different

combinations of multiple thruster firings of varying durations are

typically executed it is not a straightforward task to sort out the

details of how an individual thruster firing affects the ion fluxes in

the vicinity of the shuttle. However the thrusters do have a more

prominent impact on the local ionization than the water dumps. Even

though they are short in duration compared to the water releases they

release gases at a rate of the order of 5000 kg/hr from the primary

engines and 150 kg/hr from the verniers. These rates are large in

comparison to the release rates of 50-100kg/hr and 10 kg/hr that are

typical of water dumps and flash evaporator releases respectively.
The effects of the RCS firings on the thermal ion distributions are

multifaceted. For example reductions in the ambient O+ number fluxes in

the vicinity of the shuttle analogous to the effects of the previously
discussed water dumps are sometimes observed simultaneously with

impulsive enhancements in the measured currents of contaminant ion

species such as H O+ (and/or) NO + Figure 12 shows such an example from2
SL-2 data. Figure 13 on the other hand shows an example from STS-4

where depletions of the O+ currents are observed with corresponding

reductions in the H2O+ currents during thruster firings (from Narclsi et
al., 1983). There are also times when the measurements detect ambient

ion current enhancements above their quiescent levels such as those

labeled in the earlier discussed Figure 9 and times when no noticeable
effect is detectable in the ion measurements during thruster firings.

In order to isolate the causes of some of these effects, a comprehensive

analysis of SL-2 ion spectrometer measurements was made restricting

attention to only vernier engine firings in which one or at most 2 of

the verniers fired simultaneously. The firing events were further
restricted to those with duration greater than I second. The latter

criterium was established because the ion spectrometer took 2.4 seconds

to sweep through all ion masses and it was desired to insure that there

was a high probability that at least one of the ion species associated

with a thruster perturbation was sampled by the instrument during the

firing.
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Figure 14 depicts the locations of the 3 vernier thrusters on the

port side of the shuttle. There is a symmetric trio on the starboard

side the names of which correspond to the port side nomenclature with

the L's replaced by R's. One of the significant features of their

locations is the positioning of the rear verniers near prominent

projections of the shuttle in contrast to the the shuttle topology near

the two forward verniers, F5L and F5L. Due to the expansion of the

exhaust plumes, the rearward thrusters will be partially scattered off
shuttle shuttle surfaces but the forward ones will not. This has been

noted by Wulf and yon Zahn (1986) to account for the detection of

neutral molecule concentration enhancements in the bay during rear

thruster firings and the absence of such ef_ects wi_h the firihg Of the

thrusters on the nose. Isolating attention to the verniers rather than

all RCS thrusters considerablg-Simpiifies_thenumber_0f thrusters to

keep track of - i.e., only 6 verniers compared to 38 main thrusters.

The combustion within a thrust chamber results in the formation of

ions as well as the predominantly neutral hot thrust gases and it is

possible that such ions could produce an enhancement in contaminant ion

number fluxes near the shuttle in association with the firings. Since

water, nitric oxide and molecular hydrogen are produced in the nitrogen

tetroxlde - monomethyl hydrazine reaction similar ion species could

appear in measurable concentrations. However the predom!hant_consti-

tuents of the thruster Jet are neutral molecules of high concentration

that enhance, albeit in a complex geometrical fashion, the cloud of

gases moving with the shuttle. These neutral effluents will, through

collisional reactions with the ambient plasma, result in the production

of contaminant ion species. This is clearly seen by taking a model of

the molecular concentration variations in a steady state vernier exhaust

plume and computing the mean free path distribution for an _bient 0+

ion moving through it. The results of Such a computation (depicted in

Figure 15) demonstrate that the thruster pIumes in the near vicinity of

the spacecraft are essentially opaque to the passage of ambient ions

which through charge exchange will yield their charge to the neutral
thruster jet-effiuents.

Considering all ion spectrometer observations made while the PDP was

secured in the SL-2 bay, a search was made for all individual and paired

firings of the verniers. The appended Table lists the number of

occurrences of each set of Vernier firings, the number and percentage of

firings which caused observable ion perturbations, and the average

duration of the firings ignoring the few extremeiy iong ones. Enhance-

ments in ion species currents were th_ dominant @ffectsobserved. The

number of events for which depletions in one or more species currents

were the result of the firings were infrequent and are listed in

parentheses fh _he Table. The forward verniers although not impacting

any Prominent scattering surfaces were still at times detectable in the

ion measurements taken from within the shuttle payload bay. On the

other hand there is evidence that the scattering of the plumes off

spacecraft Surfaces has asignificant impact on the thermal ion

distributions - there were significantly more detections of perturba-

tions by the rear thruster firings - particularly for the downward

thrusters which skirt past the wings.
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The observations at first look seem consistent with the detection of

ionization that is produced in the combustion and streams out with the

neutral products. For example Figure 16 shows a continuous time segment

of SL-2 measurements when the PDP was held out over the port side and

the spectrometer was facing rearward and the two opposing rear downward

thrusters fired. All contaminant ions anticipated - i.e., 18, 19, 28

and 30 AMU species- were enhanced in current magnitude in association

with the firing compared to conditions in the following cycle of

sensitivity sweeps when the thrusters were off. However the I and 16

AMU ions are ambient in origin and are not from the thruster chamber and

yet their collected currents are enhanced relative to the quiescent

conditions existing on the sweeps before and after the thruster

sequence. This is evidence that the neutral effluents of the thrusters

are modifying the ambient ion distributions and perhaps through charge

exchange are responsible for the contaminant ions observed rather than

ions produced in the thrust reaction. The measured effect lasts

approximately for the duration of the firing and appears to endure after
the firing ceases - the latter behavior may not be a persistence of the

effect however since there was a lack of total synchronization of the

PDP data record time and that of the spacecraft clock on this mission.

This resulted in unresolvable varying time differences between the

recorded thruster firing times and the times of PDP measurements of as

much as a few seconds (personal communication, R. L. Brechwald, U. Iowa,
1988).

Evidence that charge exchange between ambients and thruster plume

neutral molecules plays a significant role in contaminant ion production

was found in several instances in which the observed ion perturbation

duration was the order of a second longer than the duration of the

thruster firing. Although absolute times of thruster firings and

instrument sampling times might be offset, shuttle time intervals given

for the thruster firings can validly be compared to intervals of time

determined from the ion spectrometer mass sweep scans which are set by

internal oscillators. One such example of the persistence of the

observed ion effect beyond the duration of the thruster firing is

depicted in Figure 17. This again is an example of SL-2 ion measure-
ments taken with the PDP on the extended RMS arm. The thruster

perturbations of the ions are in evidence by the obvious difference in
the amplitudes and ion species of the ion peaks near the time of the

firing from those detected for the same sensitivity levels on the cycle

of sweeps before and after the firing. The peaks labeled H correspond

to instrument harmonics of 18 AMU ions - these will vary in amplitude in

step with the 18 AMU influx occurring at the same time and can be used

to denote the presence of the water ions. Such harmonics are natural to

the RF response of this type of instrument. The observations in the

figure show that the enhanced ionization resulting from the thrusters

lasts for over a second longer than the duration of the firings. Since

the thruster cutoff times are extremely rapid these observations cannot

be accounted for by thruster chamber produced ions.

Finally, it is inherent to the thruster effects that they are

dependent upon the ambient magnetic field direction with respect to the
moving vehicle. Figure 18 gives an example of measurements during 2
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segments of the same orbit during which the same two rear vernier

thrusters fired for similar times and during similar sensitivity level

scans of the spectrometer - in one instance ion perturbations were

definitely detected from within the bay, but in the other nothing was

measured above the instrument sensitivity. Comparing the spacecraft

velocity vector directions in X,Y,Z body axis coordinate that are listed

in the figure shows that the shuttle's attitude with respect to its

velocity was identical in both instances. However the magnetic field

direction angles in the same coordinate system were distinctly

different. Indeed calculating the pickup ion guiding center velocity

for the two segments reveals that the thruster related ions were not

measured when the pickup velocity was large and directed predominantly

into the belly of the spacecraft - i.e., the contaminant ions were

shadowed strongly by the shuttle and prevented from encountering the

spectrometer within the bay. When the thruster ion effect was detected

the corresponding pickup ion flow velocity was relatively low in

magnitude and its dominant spatial direction was not toward the belly -

hence contaminant ions could more readily have paths that take them to

the spectrometer than in the previously discussed instance. Hence Just

as for the quiescent state and water dump ion contaminant distributions,

some of the thruster effects are consistent with charge exchange

production and interactions with the shuttle that are characterized by a

plasma wake configuration different from that of the ambient ions.

Commen t

The thermal ion environment of large gas emitting bodies like the

shuttle and the space station is always characterized by the presence of

ions not of ambient origin. These ions are due predominantly to charge

exchange interactions between the ambient ionospheric positive ions and

the extended gas cloud moving with the vehicle. After the initial

period of degassing of the spacecraft the effects on the ion currents

collected near the vehicle are relatively small under quiescent

conditions. However for impulsive gas releases such as thruster firings

or water releases there are pronounced perturbations in the incoming

number fluxes and energy distribution of the thermal ions that need to

be fully modeled in order to determine the ramifications for current

collecting devices.
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Figure 7. A schematic model of the average environment about the
shuttle. Water ions formed by charge exchange follow guiding center

paths perpendicular to B that are oblique, in the shuttle frame of
reference, to the streamlines of ambient ions. This results in a

contaminant ion influx and resultant depleted plasma wake behind the

shuttle that differs from the corresponding ambient ion behavior.
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Figure 8. SL-2 ion measurements made within the wake on three

consecutive orbits showing differing contaminant and ambient ion

behavior are shown on the bottom. Model calculations of currents to be

expected for these orbitl shown at the top reproduce the differing wake
behaviors. This figure is from Eccles (1988).
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(F5R, R5R, R5D) are located symmetrically on the starboard (right) side
of the vehicle.
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Figure 15. The RCS plume concentration configuration computed by Smith

(1983) with the ramp code was simply scaled to the vernier effluent rate

and then used to compute the mean free path of ambient O+ ions moving

through it. The thruster plume is depicted as directed downward in the

figure - the exact orientation of course is dependent upon which

thruster is considered. The angles in the parentheses at the top rate

are the angles of the shuttle's velocity in the spacecraft X, Y, Z

coordinate system.
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Figure 16. An example from SL-2 of the detection of ion perturbations

from a pair of rear firing thrusters. The PDP was on the RMS as shown
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are swept on each cycle from low to high AMU's with each sensitivity

level mass scan duration of approximately 2.4 seconds. The current peak
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Figure 18. Two sequences of similar SL-2 thruster firings at the same

shuttle attitude on the same orbit have different consequences at the

ion spectrometer location within the bay. The differences in the

magnetic field orientation with respect to the shuttle will produce

distinctly different pick-up ion trajectories that could explain the
differences.
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