1,768 research outputs found
Magnetic Pinning of Vortices in a Superconducting Film: The (anti)vortex-magnetic dipole interaction energy in the London approximation
The interaction between a superconducting vortex or antivortex in a
superconducting film and a magnetic dipole with in- or out-of-plane
magnetization is investigated within the London approximation. The dependence
of the interaction energy on the dipole-vortex distance and the film thickness
is studied and analytical results are obtained in limiting cases. We show how
the short range interaction with the magnetic dipole makes the co-existence of
vortices and antivortices possible. Different configurations with vortices and
antivortices are investigated.Comment: 12 pages, 12 figures. Submitted to Phys. Rev.
Calibration of quasi-static aberrations in exoplanet direct-imaging instruments with a Zernike phase-mask sensor. II. Concept validation with ZELDA on VLT/SPHERE
Warm or massive gas giant planets, brown dwarfs, and debris disks around
nearby stars are now routinely observed by dedicated high-contrast imaging
instruments on large, ground-based observatories. These facilities include
extreme adaptive optics (ExAO) and state-of-the-art coronagraphy to achieve
unprecedented sensitivities for exoplanet detection and spectral
characterization. However, differential aberrations between the ExAO sensing
path and the science path represent a critical limitation for the detection of
giant planets with a contrast lower than a few at very small
separations (<0.3\as) from their host star. In our previous work, we proposed a
wavefront sensor based on Zernike phase contrast methods to circumvent this
issue and measure these quasi-static aberrations at a nanometric level. We
present the design, manufacturing and testing of ZELDA, a prototype that was
installed on VLT/SPHERE during its reintegration in Chile. Using the internal
light source of the instrument, we performed measurements in the presence of
Zernike or Fourier modes introduced with the deformable mirror. Our
experimental and simulation results are consistent, confirming the ability of
our sensor to measure small aberrations (<50 nm rms) with nanometric accuracy.
We then corrected the long-lived non-common path aberrations in SPHERE based on
ZELDA measurements. We estimated a contrast gain of 10 in the coronagraphic
image at 0.2\as, reaching the raw contrast limit set by the coronagraph in the
instrument. The simplicity of the design and its phase reconstruction algorithm
makes ZELDA an excellent candidate for the on-line measurements of quasi-static
aberrations during the observations. The implementation of a ZELDA-based
sensing path on the current and future facilities (ELTs, future space missions)
could ease the observation of the cold gaseous or massive rocky planets around
nearby stars.Comment: 13 pages, 12 figures, A&A accepted on June 3rd, 2016. v2 after
language editin
First light of the VLT planet finder SPHERE. I. Detection and characterization of the sub-stellar companion GJ 758 B
GJ758 B is a brown dwarf companion to a nearby (15.76 pc) solar-type,
metal-rich (M/H = +0.2 dex) main-sequence star (G9V) that was discovered with
Subaru/HiCIAO in 2009. From previous studies, it has drawn attention as being
the coldest (~600K) companion ever directly imaged around a neighboring star.
We present new high-contrast data obtained during the commissioning of the
SPHERE instrument at the VLT. The data was obtained in Y-, J-, H-, and Ks-bands
with the dual-band imaging (DBI) mode of IRDIS, providing a broad coverage of
the full near-infrared (near-IR) range at higher contrast and better spectral
sampling than previously reported. In this new set of high-quality data, we
report the re-detection of the companion, as well as the first detection of a
new candidate closer-in to the star. We use the new 8 photometric points for an
extended comparison of GJ758 B with empirical objects and 4 families of
atmospheric models. From comparison to empirical object, we estimate a T8
spectral type, but none of the comparison object can accurately represent the
observed near-IR fluxes of GJ758 B. From comparison to atmospheric models, we
attribute a Teff = 600K 100K, but we find that no atmospheric model can
adequately fit all the fluxes of GJ758 B. The photometry of the new candidate
companion is broadly consistent with L-type objects, but a second epoch with
improved photometry is necessary to clarify its status. The new astrometry of
GJ758 B shows a significant proper motion since the last epoch. We use this
result to improve the determination of the orbital characteristics using two
fitting approaches, Least-Square Monte Carlo and Markov Chain Monte Carlo.
Finally, we analyze the sensitivity of our data to additional closer-in
companions and reject the possibility of other massive brown dwarf companions
down to 4-5 AU. [abridged]Comment: 20 pages, 15 figures. Accepted for publication in A&
First light of the VLT planet finder SPHERE. II. The physical properties and the architecture of the young systems PZ Tel and HD 1160 revisited
[Abridged] Context. The young systems PZ Tel and HD 1160, hosting known
low-mass companions, were observed during the commissioning of the new planet
finder SPHERE with several imaging and spectroscopic modes. Aims. We aim to
refine the physical properties and architecture of both systems. Methods. We
use SPHERE commissioning data and REM observations, as well as literature and
unpublished data from VLT/SINFONI, VLT/NaCo, Gemini/NICI, and Keck/NIRC2.
Results. We derive new photometry and confirm the nearly daily photometric
variability of PZ Tel A. Using literature data spanning 38 yr, we show that the
star also exhibits a long-term variability trend. The 0.63-3.8 mic SED of PZ
Tel B allows us to revise its properties: spectral type M7+/-1, Teff=2700+/-100
K, log(g)<4.5 dex, log(L/L_Sun)=-2.51+/-0.10 dex, and mass 38-72 MJ. The 1-3.8
mic SED of HD 1160 B suggests a massive brown dwarf or a low-mass star with
spectral type M5.5-7.0, Teff=3000+/-100 K, [M/H]=-0.5-0.0 dex,
log(L/L_Sun)=-2.81+/-0.10 dex, and mass 39-168 MJ. We confirm the deceleration
and high eccentricity (e>0.66) of PZ Tel B. For e<0.9, the inclination,
longitude of the ascending node, and time of periastron passage are well
constrained. The system is seen close to an edge-on geometry. We reject other
brown dwarf candidates outside 0.25" for both systems, and massive giant
planets (>4 MJ) outside 0.5" for the PZ Tel system. We also show that K1-K2
color can be used with YJH low-resolution spectra to identify young L-type
companions, provided high photometric accuracy (<0.05 mag) is achieved.
Conclusions. SPHERE opens new horizons in the study of young brown dwarfs and
giant exoplanets thanks to high-contrast imaging capabilities at optical and
near-infrared wavelengths, as well as high signal-to-noise spectroscopy in the
near-infrared from low (R~30-50) to medium resolutions (R~350).Comment: 25 pages, 23 figures, accepted for publication in A&A on Oct. 13th,
2015; version including language editing. Typo on co-author name on astroph
page corrected, manuscript unchange
Adaptive reuse of cultural built heritage: towards the implementation of the circular city model
Climate change, pollution, and inequalities are prominent issues in cities and regions, calling for an ecological and cultural transition towards a sustainable society where wellbeing, quality of life, ecosystems human health and equity are prioritized. Circular economy and circular city models offer frameworks for achieving these objectives, promoting symbiotic relationships between different forms of capital within urban ecosystems: economic, environmental, social, cultural, institutional and human capitals. Historic urban areas, through the adaptive reuse of cultural heritage, can contribute to the circular economy model, enhancing urban metabolism while preserving cultural integrity. Co-design and co-planning processes involving stakeholders and communities are essential to realize the circular city, thus integrating conservation with development. The aim of this paper is to conduct an ex post analysis of cultural heritage adaptive reuse projects in Europe, that are particularly well “performing” from the perspective of the circular economy implementation in cities and regions. Circular economy is interpreted not only in terms of reuse/regeneration of waste, but also has promoting a new mindset. These examples are examined based on specific criteria and indicators from the EU-funded Horizon 2020 CLIC research project, identifying success factors, tools, and models emerging from good practices that can potentially be replicated and transferred for the circular adaptive reuse of Italian cultural heritage. Particular attention in the selection of case studies has been given to the co-planning and co-design experiences activated, to highlight the social innovation capacity of the analysed adaptive reuse projects
INFN What Next: Ultra-relativistic Heavy-Ion Collisions
This document was prepared by the community that is active in Italy, within
INFN (Istituto Nazionale di Fisica Nucleare), in the field of
ultra-relativistic heavy-ion collisions. The experimental study of the phase
diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP)
deconfined state will proceed, in the next 10-15 years, along two directions:
the high-energy regime at RHIC and at the LHC, and the low-energy regime at
FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the
present and future programme of the ALICE experiment, the upgrade of which will
open, in the 2020s, a new phase of high-precision characterisation of the QGP
properties at the LHC. As a complement of this main activity, there is a
growing interest in a possible future experiment at the SPS, which would target
the search for the onset of deconfinement using dimuon measurements. On a
longer timescale, the community looks with interest at the ongoing studies and
discussions on a possible fixed-target programme using the LHC ion beams and on
the Future Circular Collider.Comment: 99 pages, 56 figure
In-depth study of moderately young but extremely red, very dusty substellar companion HD206893B
Accepted for publication in Astronomy & Astrophysics. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.The substellar companion HD206893b has recently been discovered by direct imaging of its disc-bearing host star with the SPHERE instrument. We investigate the atypical properties of the companion, which has the reddest near-infrared colours among all known substellar objects, either orbiting a star or isolated, and we provide a comprehensive characterisation of the host star-disc-companion system. We conducted a follow-up of the companion with adaptive optics imaging and spectro-imaging with SPHERE, and a multiinstrument follow-up of its host star. We obtain a R=30 spectrum from 0.95 to 1.64 micron of the companion and additional photometry at 2.11 and 2.25 micron. We carried out extensive atmosphere model fitting for the companions and the host star in order to derive their age, mass, and metallicity. We found no additional companion in the system in spite of exquisite observing conditions resulting in sensitivity to 6MJup (2MJup) at 0.5" for an age of 300 Myr (50 Myr). We detect orbital motion over more than one year and characterise the possible Keplerian orbits. We constrain the age of the system to a minimum of 50 Myr and a maximum of 700 Myr, and determine that the host-star metallicity is nearly solar. The comparison of the companion spectrum and photometry to model atmospheres indicates that the companion is an extremely dusty late L dwarf, with an intermediate gravity (log g 4.5-5.0) which is compatible with the independent age estimate of the system. Though our best fit corresponds to a brown dwarf of 15-30 MJup aged 100-300 Myr, our analysis is also compatible with a range of masses and ages going from a 50 Myr 12MJup planetary-mass object to a 50 MJup Hyades-age brown dwarf...Peer reviewedFinal Accepted Versio
Post conjunction detection of Pictoris b with VLT/SPHERE
With an orbital distance comparable to that of Saturn in the solar system,
\bpic b is the closest (semi-major axis \,9\,au) exoplanet that has
been imaged to orbit a star. Thus it offers unique opportunities for detailed
studies of its orbital, physical, and atmospheric properties, and of
disk-planet interactions. With the exception of the discovery observations in
2003 with NaCo at the Very Large Telescope (VLT), all following astrometric
measurements relative to \bpic have been obtained in the southwestern part of
the orbit, which severely limits the determination of the planet's orbital
parameters. We aimed at further constraining \bpic b orbital properties using
more data, and, in particular, data taken in the northeastern part of the
orbit.
We used SPHERE at the VLT to precisely monitor the orbital motion of beta
\bpic b since first light of the instrument in 2014. We were able to monitor
the planet until November 2016, when its angular separation became too small
(125 mas, i.e., 1.6\,au) and prevented further detection. We redetected \bpic b
on the northeast side of the disk at a separation of 139\,mas and a PA of
30 in September 2018. The planetary orbit is now well constrained.
With a semi-major axis (sma) of au (1 ), it
definitely excludes previously reported possible long orbital periods, and
excludes \bpic b as the origin of photometric variations that took place in
1981. We also refine the eccentricity and inclination of the planet. From an
instrumental point of view, these data demonstrate that it is possible to
detect, if they exist, young massive Jupiters that orbit at less than 2 au from
a star that is 20 pc away.Comment: accepted by A&
Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at = 5.02 TeV
Two-particle angular correlations between unidentified charged trigger and
associated particles are measured by the ALICE detector in p-Pb collisions at a
nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum
range 0.7 5.0 GeV/ is examined,
to include correlations induced by jets originating from low
momen\-tum-transfer scatterings (minijets). The correlations expressed as
associated yield per trigger particle are obtained in the pseudorapidity range
. The near-side long-range pseudorapidity correlations observed in
high-multiplicity p-Pb collisions are subtracted from both near-side
short-range and away-side correlations in order to remove the non-jet-like
components. The yields in the jet-like peaks are found to be invariant with
event multiplicity with the exception of events with low multiplicity. This
invariance is consistent with the particles being produced via the incoherent
fragmentation of multiple parton--parton scatterings, while the yield related
to the previously observed ridge structures is not jet-related. The number of
uncorrelated sources of particle production is found to increase linearly with
multiplicity, suggesting no saturation of the number of multi-parton
interactions even in the highest multiplicity p-Pb collisions. Further, the
number scales in the intermediate multiplicity region with the number of binary
nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/161
- …
