472 research outputs found

    Zusammenhang zwischen der Kohlenstoffstruktur und der Bildung organischer Spurenstoffe auf Flugaschen

    Get PDF

    Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid

    Full text link
    The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material's crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong Coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature. Similar phenomena are observed also in higher dimensions, but the microscopic description of the corresponding phase transition is often controversial, and remains an open field of research for fundamental physics. Here, we photoinduce the melting of the charge ordering in a complex three-dimensional solid and monitor the consequent charge redistribution by probing the optical response over a broad spectral range with ultrashort laser pulses. Although the photoinduced electronic temperature far exceeds the critical value, the charge-density wave is preserved until the lattice is sufficiently distorted to induce the phase transition. Combining this result with it ab initio} electronic structure calculations, we identified the Peierls origin of multiple charge-density waves in a three-dimensional system for the first time.Comment: Accepted for publication in Proc. Natl. Acad. Sci. US

    Comparison of Retention Forces of Different Fabrication Methods of Co-Cr Crowns: Pre-sintered and Milled, Cast and Electroforming Secondary Crowns with Different Taper Angles

    Get PDF
    To investigate the retention forces of differently fabricated secondary crowns made of Co-Cr alloy and electroforming secondary crowns considering different taper angles. Cobalt-chromium primary crowns with 0°, 1° and 2° taper angles were fabricated. Secondary crowns were made either by i.) a milling and sintering, ii.) casting or iii.) electro-forming process. Pull-off tests were performed and data were analyzed by parametric statistics (p<0.05). With regard to the different taper angles, Co-Cr milled and cast groups, no impact on retention force was observed. Within the electroforming group, primary crowns with a taper angle of 1° showed a higher retention force than crowns with angles of 0° or 2°. With respect to the secondary crowns, primary crowns with a taper angle of 1° showed no impact on the results. Within the taper angles of 0° and 2°, the electroforming group exhibited lower retention forces than cast or milled ones. In the 0° taper angle group, milled secondary crowns displayed higher values than cast ones

    Sequential two-player games with ambiguity

    Get PDF
    Author's pre-printIf players' beliefs are strictly nonadditive, the Dempster–Shafer updating rule can be used to define beliefs off the equilibrium path. We define an equilibrium concept in sequential two-person games where players update their beliefs with the Dempster–Shafer updating rule. We show that in the limit as uncertainty tends to zero, our equilibrium approximates Bayesian Nash equilibrium. We argue that our equilibrium can be used to define a refinement of Bayesian Nash equilibrium by imposing context-dependent constraints on beliefs under uncertainty.ESRC senior research fellowship scheme, H5242750259

    Information and ambiguity: herd and contrarian behaviour in financial markets

    Get PDF
    “The final publication is available at Springer via http://dx.doi.org/10.1007/s11238-012-9334-3”The paper studies the impact of informational ambiguity on behalf of informed traders on history-dependent price behaviour in a model of sequential trading in nancial markets. Following Chateauneuf, Eichberger and Grant (2006), we use neo-additive capacities to model ambiguity. Such ambiguity and attitudes to it can engender herd and contrarian behaviour, and also cause the market to break down. The latter, herd and contrarian behaviour, can be reduced by the existence of a bid-ask spread.Research in part funded by ESRC grant RES-000-22-0650

    Ring closing reaction in diarylethene captured by femtosecond electron crystallography

    Get PDF
    The photoinduced ring-closing reaction in diarylethene, which serves as a model system for understanding reactive crossings through conical intersections, was directly observed with atomic resolution using femtosecond electron diffraction. Complementary ab initio calculations were also performed. Immediately following photoexcitation, subpicosecond structural changes associated with the formation of an open-ring excited-state intermediate were resolved. The key motion is the rotation of the thiophene rings, which significantly decreases the distance between the reactive carbon atoms prior to ring closing. Subsequently, on the few picosecond time scale, localized torsional motions of the carbon atoms lead to the formation of the closed-ring photoproduct. These direct observations of the molecular motions driving an organic chemical reaction were only made possible through the development of an ultrabright electron source to capture the atomic motions within the limited number of sampling frames and the low data acquisition rate dictated by the intrinsically poor thermal conductivity and limited photoreversibility of organic materials

    Generalized Method to Extract Carrier Diffusion Length from Photoconductivity Transients Cases of BiVO4, Halide Perovskites, and Amorphous and Crystalline Silicon

    Get PDF
    Long diffusion lengths of photoexcited charge carriers are crucial for high power conversion efficiencies of photoelectrochemical and photovoltaic devices. Time resolved photoconductance measurements are often used to determine diffusion lengths in conventional semiconductors. However, effects such as polaron formation or multiple trapping can lead to time varying mobilities and lifetimes that are not accounted for in the conventional calculation of the diffusion length. Here, a generalized analysis is presented that is valid for time dependent mobilities and time dependent lifetimes. The diffusion length is determined directly from the integral of a photoconductivity transient and can be applied regardless of the nature of carrier relaxation. To demonstrate our approach, photoconductivity transients are measured from 100 fs to 1 s by the combination of time resolved terahertz and microwave spectroscopy for BiVO4, one of the most studied metal oxide photoanodes for photoelectrochemical water splitting. The temporal evolution of charge carrier displacement is monitored and converges after about 100 ns to a diffusion length of about 15 nm, which rationalizes the photocurrent loss in the corresponding photoelectrochemical device. The presented method is further validated on a amp; 8722;Si H, c amp; 8722;Si, and halide perovskite, which underlines its potential to determine the diffusion length in a wide range of semiconductors, including disordered material
    • 

    corecore