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Abstract

If players’ beliefs are strictly non-additive, the Dempster-Shafer updating rule can be
used to define beliefs off the equilibrium path. We define an equilibrium concept in se-
quential two-person games where players update thar beliefs with the Dempster- Shafer
updating rule. We show that in the limit as uncertainty tends to zero, our equilibrium g-
proximates Bayesian Nash equilibrium. We argue that our equilibrium can be used to define
arefinement of Bayesian Nash equilibrium by imposing context-dependent constraintson

belief sunder uncertainty.
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1. INTRODUCTION

Economi sts have made adistinctionbetween risk (where probabilities are objectively known)
and ambiguity (where probabilities are unknown). Until recently it was not dear how to
model this formally. Schmeidler (1989) has proposed an axiomati ¢ decision theory, which
is eble to model ambiguity. Inthis theory, the decision-maker's beliefs are represented by a
capacity (non-additive subjective probability) and (s)he is modelled as maximising the ex-
pected value of utility with respect to the capecity. Ambiguity isrepresented by strictly non-
additive capacities. The expectation is expressed as a Choquet integral (Choquet, 1953-4).
Schmeidler'stheory will henceforth be referred to as Choquet expected utility (CEU).

A number of researchers have applied CEU (or relaed theories) to games?. Most of
these pgpers consider strategic (normal) form games. Lo (1999) suggests an equilibrium
concept for extensive form games under ambiguity. Since he usestherelated multiple-prior
expected utility theory to modd ambiguity, he discusses anumber of conceptual problems
which arise in the context of dynamic gamesif playersface strategic ambiguity. The paper
containsmany instructiveexamples but no generd theorems about existence of equilibrium
if players face ambiguity.

Approaching the problem of extensive form gamesin a very general way, Lo (1999)
cannot exploit oneof the strengthsof non-additive probabilities, namely that unlike additive
probabilities, they can be updated after events with a capacity value of zero. In the present

paper, we apply CEU to sequential two-player games. Thisclass of extensive form games

2 See Dow and Werlang (1994), Eichberger and Kdsey (2000), Hendon et al. (1994), Klibanoff (1996), Lo

(1996) and Marinacci (2000).



comprises many important game-theoretic models in economics such as signalling games,
two-stage industrid organisaion models or bargaining problems. Restricting ourself to
this class of games allows us to ignore some of the consistency problems encountered in
Lo (1999).

In extensive form games, updating of beliefs on newly acquired information isimpor-
tant. If beliefs arerepresented by additive probability distributions, then Bayesian updating
is the natural method to incorporate the informati on obtained from the observed moves of
the opponents. Bayesian updating however ispossible only at information setswhich have
apositive probability of being reached. Asis well-known, play at information sets off the
equilibrium path can have amgor effect on the equilibrium itself. Thusitisimportant to
determine players’ beliefs at such information sets. Because Bayesian updating puts no
restrictions on such beliefs, amultiplicity of equilibriais compatible with Bayesian beliefs.

Games with incomplete information are usually plagued by alarge number of Bayes-
Nash equilibria. Signalling gamesin particular havetypically an excessivedy large number
of equilibria because the signal space is large compared to the type space, which implies
that most actionswill not be observed in equilibrium. Themultiplicity of equilibriadepends
on the lack of constraints on out-of -equilibrium strategies. There is a huge literature in
game-theory which tries to impose further constraints on beliefs by additional rules about
how a player should interpret out-of-equilibrium moves in equilibrium. Such constraints
on bdiefs refine the set of Bayes-Nash equilibria. Compare Mailath (1992) for a survey
of refinements in the context of signalling games. Most refinements have been based on

forward or backward induction arguments. A common criticismof such argumentsisthat, if



theinitial situationisindeed an equilibrium, then players should conclude from a deviation
that the opponent isnot rationd or does not understand the structure of the game.

In this paper, we propose a definition of equilibrium where players have non-additive
beliefsand use an updating rule proposed by Dempster and Shafer in the literature for ca-
pacities. Thisequilibrium nation comprises Bayes-Nash equilibrium asa special case. The
Dempster-Shafer updating rule, which is part of our equilibrium concept, has well-defined
updated capacities off the equilibrium path as long as there is ambiguity. Capacities can
be further constrained by adequate assumptions about belief s without affecting consi stency
of bdiefsin an equilibrium under ambiguity. Hence, there is room to put constraints on
belief s which may be specific to situaion one wants to model. For example, one can ex-
ogenoudy determine the degree of ambiguity or one can restrict beliefs to agree with an
additive prior distribution, if one wants to model a situation where players are completely
confident about the distribution of types but ambiguous about their opponents’ strategic be-
haviour. It ispossible to control for the ambiguity of asituation in experimentsin order to
see how it aff ects decision behaviour. For individual decision situations, such experiments
have been performed (Camerer and Weber, 1992). There arefew experiments so far, which
focus on strategic ambiguity, but we are confident that such tests can be conducted.

One can parametrise the notion of ambiguity and demonstrate existence of equilibrium
for any exogenoudly determined level of ambiguity. This opens up the possihility to study
sequences of equilibria under ambiguity which converge to a Bayesian equilibrium as ambi-
guity vanishes. Assumptions about beliefs under ambiguity will determine which Bayesian

equilibrium will be selected. An interesting aspect of thisapproach is, even in a Bayesian



equilibrium, beliefs off the equilibrium path may be represented by capacities which are
not additive. The greater freedom of modelling bdiefs under ambiguity provides a novel
and useful modelling device for economic applications.

In section 2 we introduce the CEU model and demonstrate some properties of CEU
and the Dempster—Shafer updating rule. Section 3introduces our solution concept for two-
stage games under ambiguity and relates it to some existing solution concepts. Section 4
studies limits of sequences of equilibriaas ambiguity vanishes. We show that ambiguous
belief s can sel ect among Bayesian equilibria. Section 6 concludesthe pgoer. All proofsare

gathered in an appendix.

2. CEUPREFERENCESAND DS-UPDATING

In this section we consider a finite set S of states of nature. A subset of S isreferred to
as an event. The set of possible outcomes or consequences is denoted by X. Anactisa
function from S to X. The space of all actsisdenoted by A(S) := {a] a: S — X}. The
decision-maker’s preferences over A(S) are denoted by =.

A capacity or non-additive probability on S is areal-valued function v on the subsets

of S, which satisfiesthe following properties:
i) ACB implies v (A) < v (B);

i)y v(w) =0, v(S)=1.
The capacity issaidto beconvexif forall A, B C S, v(AUB) > v(A)+v(B) —v(AN

B). Representing beliefs by aconvex capacity is compatible with experimental evidence
(see Camerer und Weber, 1992) and is commonly used in applications of CEU to model

ambiguity averse behaviour. e shall assume that all capacities are convex.



We shall use capacities to represent the beliefs of players. In game-theoretic applica-
tions, the opponents’ strategy combinations will be the relevant states for a player. It is
possible to define an expected value with respect to a capacity to be a Choquet integral
(Choquet, 1955).

Forany function¢ : S — Randany outcomez € X let B(z|¢) := {s € S : ¢ (s) > x}
be the event in which ¢ is greater than or equal to z. Similarly, denate by B(z|¢) :=
{s € S: ¢(s) > x} the eventin which ¢ produces astrictly greater outcome than x. The

Choquet integral of ¢ with respect to the capacity v is defined as

& [oar=3 o wBls) (Bl
z€P(S)
where the summation isover therange of the ect, ¢(S) .= {z € X| I s € S, ¢(s) = z}.
Weshall assumethat preferences may berepresented by Choquet expected utility (CEU)

with respect to acapadty, i.e.

ax=be /u(a(s))du (s) = /u(b (s))dv(s).

Such preferences have been axiomati sed by Gilboa (1987) and Sarin and Wakker (1992).

Definition 21 The degree of ambiguity of capacity v isdefined by

Av)=1- gngusl(y(A) + v(S\A4)).

This definition is adgpted from Dow and Werlang (1992). It has been justified episte-
mologically by Mukerji (1997). The degree of ambiguity is a measureof the deviaion from
additivity. For an additive probability A(v) = 0, while for complete ambiguity A(v) = 1.

The following result confirms that the degree of ambiguity is areasonable measure of de-



viation from additivity, for convex capadties®.

Lemma 2.2 If aconvex capacity v has zero degree of ambiguity then it isadditive.

2.1 Thesupport of a capacity

In game theory, players are assumed to maximi se their expected payoffs. Strategy choices
are considered inequilibrium if beliefs are consistent with actual behaviour. The strongest
form of consistency, Nash equilibrium, requiresplayers beliefsto coincddewiththeir actual
behaviour. In an alternative and equivalent definition of Nash equilibrium the strategiesin
the support of the opponents beliefs about a player's behaviour must be best responses
of that player. In other words, players expect their opponents to play only best-response
strategies.

If decision makers’ ambiguity ismoddled by capacitiesthen there are several concepts
of a support which all coincide with the usud notion of support in the case of additive

capacities. In this paper we will use the following definition.

Definition 23 A support of a capacity v isan event A C S such that v(S\A4) = 0 and

v(S\B) > 0, for al events B C A.

Thisdefinition of the supportis dueto Dow and Werlang (1994). Above we define the
support of a capacity to bea minimal set whose complement has a capacity value of zero.
This is equivdent to the usual definition of support (i.e. a minimal set of probability one)

for an additive cgpacity but will generally yield asmaller set if the capecity isnot additive.

3 Thelemmaisfalseif convexity isnot assumed. A counter-examplewould be the dassof symmetric capacities

studied by Gilboa (1989) and Nehring (1994).



With this support notion every capacity has asupport. However it has been criticised
because the support is not necessarily unique and states outside the support may affect
decision making if a bad outcome occurs on them. In Eichberger and Kelsey (2001) we
provide an extensive discussion of various support notions for capacities suggested in the
literature®. In particular, we show that the support is unique if and only if one requiresin
addition v(B) > 0, for al events B in the support. Adding this requirement to Definition
2.3 guarantees a unique support but there are convex capacities for which no such support
exists. In game-theoretic applications, the lack of uniqueness poses no problem because
we show the existence of an equilibrium in which beiefs have a unique support. Moreover,
our results and examples dl have unique supports, which satisfy thisadditional restriction.

More substantial is the objection to Definition 2.3 that states outside the support are not
Savage-null. An event E' is Savage-null if outcomes on E never affect adecision, i.e. if
agc~ bgcforal actsa, b, ¢, where agc denaotes an act which yields a(s) for dl statesin
E and ¢(s) in dl other states. We believe that this argument is not appropriate in game-
theoretic applications. We will argue this case below in context with the game-theoretic

equilibrium concept, which we advancein this paper.
2.2 CEU preferencesand DS-updating

In sequential gamesplayers may receiveinformation about the opponentsby observing their
movesin earlier stages of thegame. In particular in signdling games, second-stage players
will try to infer information about characteristics of their opponents from the signalswhich

they receive. Itistherefore necessary to specify arule for how torevise beliefs represented

4 Haller (2000), Marinacd (2000) and in particular Ryan (1998) discuss and argue for other support notions.



by capadties inthelight of new information.

If beliefsare additive, Bayes ruleis the unique updating rule which maintains additiv-
ity. Asin the case of the support, with non-additive capacities there are several updating
procedures, which all coincidewith Bayesian updating in the case of additivity. Gilboaand
Schmeidler (1993) provide an exposition and an axiomatic treatment from a behavioural
perspective. |n thispaper we choose the Dempster-Shafer belief revision rule (see Shaer,

1976).

Definition 24 Dempster-Shafer revision

The Dempster-Shafer revision of capacity v givenevent £ C S'is

V((F N E)U(S\E)) — v(S\E)

@) V(F|E) = o (5\E)

The axiomatisation by Gilboa and Schmeidler (1993) shows that the Dempster- Shafer
rule (DS-rule) may be interpreted as a pessimistic updating rule. If one views capacities as
constraints on a set of additive probability distributionsthenit isequivalent to amaximum
likelihood updating procedure.

For extensive-form gamesthe DS-ruleisparticularly interesting, since it may bedefined
even whenv (E) = 0. If theevent £, about which the decision maker obtai nsinformation,
was ambiguous, v(E) + v(S\E) < 1, then the DS-rule will be well-defined even if it
has a prior capacity value of zero. Thus, it may be possible to updae non-additive beliefs
on events with a capacity value of zero. We will argue in Section 4 that this property of
DS-updating provides an approach to equilibrium selection based on ambiguity of players.

Contrary to the refinements of Bayes-Nash equilibrium based on second-order reasoning

10



about out-of-equilibrium moves, which dominate the literature, ambiguity-related refine-

ments can be given abehavioural content which is independent of the equilibrium notion.

3. SEQUENTIAL TWO-PLAYER GAMES

Inthis paper we will consider two-player gameswith completeand incompl eeinformation,
where playersmovesequentially. Without lossof generality, we will assumethroughout that
player 1 movesfirst andthat player 2 knowsthe moveof player 1 when shemakesher move.
Player 1 may have one of several typeswhich are described by afiniteset T'. If T' contains
asingle typethegame has complete information, otherwise it is of incompleteinformation.
Beliefs about types will be described below. Both players choose actions from finite action
sets A%, i = 1,2. Their payoffs are described by the utility functionsu®(s, a,t), i = 1, 2.

Strategies of player 1 coincide with adtions, S! := A!. In contrast, player 2 who ob-
serves the action of player 1 can condition her moves on this observation. Hencg, 52 :=
{s?| s : S — A?} denotesthe strategy set of player 2, which is also finite because the
action sets of both players are finite. We will denate by s2(s') € A? the action, which
player 2 will choosein response to s! according to her strategy s2.

Both players hold belief s about the opponent’s behaviour which are represented by con-
vex capacities. Player 1 has beliefs v about the strategies in S2, which player 2 will
choose A belief 2 on S? of player 1 about player 2's strategy induces a set of beliefs
{7?| s} € S'} about the actionsin A2, which player 2 will choose inresponse to astrategy
sj e St D?(E) :=12({s* € §?| s*(s}) € E}). For notational convenience we will state

definitions and results in terms of 2 though the respective statements trangl ate easily into

11



statements about the set of beliefs about actions {75 s} € S'}.

Player 2 hasto form beliefs about strategic behaviour of the possible types of player 1.
Beliefs of player 2 about player 1's type-contingent strategy choices are represented by the
capacity ! on S x T. These beliefs represent jointly this player's ambiguity about type
and strategy®. In game-theoretic applicaions it is usually assumed that prior beliefs about
types are common knowledge and additive. We can constrain v to be compatible with
an exogenous prior distribution over types, which is represented by a (possibly additive)

capacity p on the type space T.

Definition 3.1 Acapadty v on S* x T agrees with the capacity ;. on T if, for any subset

T of T,v(S* x T") = u(T").

Whether the prior belief of player 2, !, agreeswith a prior distribution ontypes or nat,
once player 2 observes the action s', which player 1 chooses she will have to revise her
beliefsin thelight of thisinformation. To simplify notation, we will write
@) SHTsY) - =vNSxT{s'y x T)

pH(({s") X T) U (S {s"}) x T)) = v ((S'\{s'}) x T)
1= (S {s"}) x T)

to denote the DS-updated capacity of theevent T/ T if the action s* has been observed.
ThisDS-updateiswell-definedif v ((S'\{s'}) xT') < 1 holds. This condition is satisfied

if

5 Herewefollow the goproach of Milgrom and Roberts (1986) for therepresentation of ganesunder incomplete

information.
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o dther player 2feels ambiguity about player 1's choice of the strategy s, i.e.,
theevent {s'} x T is ambiguous, i.e. if v1({s'} x T) +v1((S*\{s'}) x T) < 1,

e or player 2 is certain that player 1 will play strategy s' with positive probability, i.e.,
theevent {s'} x T is unambiguous and ! ({s'} x T') > 0.
Finally, let

4 Pl(s't,v?) = /u1(51,32(51),t) dv?
and, for acapacity pon T,

) PHals )= [ 025", a,t) dp

be the CEU-payoff of player 1 and 2 respectivedy. The belief p about player 1's type will

either be ! or v!(-|s!), depending on whether beliefs are formed by DS-updating or not.
3.1 Dempster-Shafer equilibrium

In order to seetherelationship between the Dempster-Shafer equilibrium concept, which
will beproposed inthis section, with the familiar notion of a Perfect Bayesian Equilibrium,
consider the case of additive capacities 7! and 72 representing players beliefs.

A Pe fect Bayesian Equilibrium (PBE) with prior distributionp onT'is

e aprobability distribution 7' on S* x T suchthat Y =(s',t) =p(t)foralt e T,
sleSt

e aprobability distribution 72 on 52,

e and afamily of probability distributions {u(-|s')},1cg1 on T such that:

13



a) (s',t) €esuppw! then s' cargmax > 7%(s?)-u' (3, s%(34),1),
lesl 42cg2

b) s? esuppn? then s?(s') cargmax > pu(t|s') - u?(st,a,t),
ac A% teT
foral st € ST,
1 .
c) pultlst 2% if > w(st,t)>0.
teT teT

(PBE)

The standard interpretation isthat 7' (s!|t) := w(s!,#)/p(t), 72(a|s!) = 72({s? €
S?| s*(s') = a}) are behaviour strategies and y(-|s') are bdiefs at the information set
reached after move s'. Behaviour strategies are identified with bdiefs of players. Note
that the belief interpretation requires 7' to be the belief of player 2 about the behaviour of
player1 and vice versa.

Without the family of probability distributions {(-|s')}s1¢51, conditions PBE-a and
PBE-b define a Bayesian equilibrium if one uses 7(s',t) instead of u(t|s') in PBE-h.
Obviously, all PBE areBayesian equilibria. All aPBE reguiresinaddition totheconditions
of aBayesian equilibrium isoptimality of behaviour atinformation sets off the equilibrium
path, i.e., after moves s' such that ZT 7(st,t) = 0, with respect to some arbitrary additive

te
belief u(t|s'). Hence, it only rules out strictly dominated actions a such information sets.
Since beliefs at information sets off the equilibrium path are arbitrary, there are usudly
many PBE depending onthebeliefs 1 (t|s') assumed at information sets off the equilibrium
path.

This multiplicity of PBE poses a serious problem in games, where there are few types

of player 1 and many more strategies of thisplayer, asit istypically the casein signalling
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games. The literature is therefore particularly rich in refinements for signalling games.
Mailath (1992) provides a good survey of the refinements applied in the context of sig-
nalling games. We show below in Example4.2 how with ambiguity aversion, a quite natural
assumption on beliefs can reduce this multiplicity of equilibria.

Gamesin strategic form where the beliefs of playersare represented by capacities have
been studied by Dow and Werlang (1994), Marinacci (2000) and Eichberger and Kelsey
(2000). In the strategic form, beliefs (¢!, »2) form an equilibriaunder uncertainty if these
belief s have supports containing only pure strategies which are optimal for the respective
player given these beliefs.

In this paper we study sequential two-player games where the action of player 1 con-
veys information to player 2. This requires a reformulation of the equilibrium concept.
In contrast to the equilibrium notion in the strategic form, wewill require that player 2's
strategy consists of actions that are optimal at each information set, i.e. after observingthe

action of player 1.

Definition 3.2 Dempster-Shafer Equilibrium (DSE)
A Dempster-Shafer equilibrium consists of capacities v* on S' x T, »? on S? and a

family of capacities {p(-|s!)}1cg1 on T such that there are supportssupp ! and supp v2

satisfying:
a) (s',t) €suppr! then s! cargmax P* (3¢, %),
slest
b) s? esuppr? then s2(s!) carg max P?(a|s!, p(-|s*
) - (+1) €rgmax PAals () oo

for all s € St,

o) p(T'sh) =vH(T'|sY)  if vI((ST\{s'}) xT) < 1.

In general, the support of acapacity need not be unique. Hence, a DSE requires us to

15



specify a set of beliefs and some associated support. In most applications the capecities
considered will have aunique support and this seemingly arbitrary choice of support for a
given capecity poses no problem®. Condition DSE-aof Definition 3.2 guarantees that only
optimd type-contingent strategies of player 1 will beincluded in the support of player 2's
beliefs. Similarly, by condition DSE-b there are only strategiesin the support of player 1’
belief swhich prescribe optimal behaviour ater a strategy of player 1. We call the equilib-
rium a Dempster-Shafer equilibrium (D SE) because, accordingto DSE-c, belief s of player
2 about the type of player 1 are obtained by the DS-updating rule.

Remark: A Dempster-Shafer equilibrium is defined as a set of beliefs over type-
contingent strategies (v*, »?) and a set of updated beliefs after strategy choices of player
1, {p(-|s%) }s1cs1. By Condition DSE-c the updated beliefs {p(-|s!)} 151 are however
aderived concept. When referring to a DSE we therefore often mention only (!, v2), if
thereis no danger of confusion.

The degreeof ambiguity A(v*), formally defined in the previous section, isaproperty of
the equilibrium beliefs (1, »2). Wewill demonstratebel ow in Proposition 3.5 that one can
take this degree of ambiguity as an exogenous paameter and deduce equilibrium beliefs.
The DSE concept is useful for economic applications because one can study games under
different degrees of ambiguity. Nash equilibrium isa special case of an equilibrium under

no ambiguity. Since the DS-updated capacity p(-|s*) is a derived concept its degree of

6 Thereare, howeve, interesting caseswhere supports are not unigue, ye where there is only one support for

each capacity which is consistent with the optimality conditions DSE-a and DSE-b.
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ambiguity \(v!(-|s')) is dso a derived property’.
We define the degree of ambiguity of agame to be the maximal degree of ambiguity of

the equilibrium beliefs. Formally, we will say that

e aDempster-Shafer equilibrium (¢!, v?) has degree of ambiguity A € [0,1] if A :=
max{A(v1), \(v?)}, and
o aDempster-Shafer equilibrium (v, ?) agrees with the additiveprior distribution p on

Tif v'(S* x {t})=p(t) foralt e T.

If the beliefsof aD SE areadditive, i.e., if thereisno ambiguity, andif thereisacommon
prior distribution over types then aDSE isa Bayesian equilibrium.
Thefollowing propasition rel ates the Dempster-Shaf er equilibrium concept to the Bayesian

equilibrium and the perfect Bayesian equilibrium notions.

Proposition 3.3

a) A Dempster-Shafer Equilibrium (v!, »?) with a degree of ambiguity A = 0, for which
the bdief of player 2, v, agreeswith the additive prior distribution p on T', isa Bayesian
Equilibrium.

b)  Consider aDempster-Shafer Equilibrium (v*, %) with a degree of ambiguity A = 0,
for which the belief of player 2, v!, agrees with the additive prior distribution p on T'. If
for each strategy s' € S! there existsatypet € T suchthat (st,t) € supp v, then the

Dempster-Shafer Equilibrium (¢!, 2) is a perfect Bayesian equilibrium.

Discussion of the DSE concept. Proposition 3.3 showsthat Bayesian equilibrium and

7 For specific types of capadties onecan proveimplicaions for the degree of ambiguity of their DS-update.

Compare Eichberger and Kdsey (1999).
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perfect Bayesian equilibrium are special cases of a DSE if there is no ambiguity. There
is mounting experimental evidence that Nash equilibrium and itsrefinements do not yield
good predictions of actual behaviour inall games. Situationsin which onefinds consistent
deviations from the Nash equilibrium hypothesis include bargaining, e.g. the ultimatum
bargaining experiments (Roth, 1995), coordination problems (Ochs, 1995), public goods
provision (Ledyard, 1995), and signalling games (Brandtsand Holt, 1992 and 1993). These
findings pose a challenge to theory and call for the investigation of modified equilibrium
concepts. Some of these anomdies can be explained by dtruistic preferences, e.g. inthe
cases of public goods and bargaining. Even inthese cases however, it isdifficult to account
for all the observed phenomena by modifying preferences alone.

The approach we propose in this paper focuses on ambiguity about thebehaviour of the
opponent players. We do not give up theidea that players maximise their expected payoff
but we investigate how ambiguity about the strategic behaviour of opponents affects the
equilibriaof games. Ambiguity about the opponents behaviour may arise by a number of
reasons.

Traditional game theory maintainsthat players deduce beliefs ebout the opponents’ be-
haviour from firm knowledge about the preferences of opponents. In games with incom-
plete information one replaces knowledge about other players payoffs, with knowledge
about the probability distribution over possible types of payoffs. Though logically sound
and completely consistent, modelling games of incomplete information by probability dis-
tributions over type spaces assumes that players have extremely high computational abili-

ties.
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Ambiguity about the strategic behaviour of the opponent playersreflecs the difficulty
of settling one’'s bdiefs firmly on aparticular probability distribution over typesand their
behaviour. This does not imply that players do not care about the motivation of the oppo-
nents or that they do not consider the possibility of different types of opponents. It means
however that their behaviour may be influenced by the fact that they do not fed certain
about such inferences.

Ambiguous beliefs represented by capacities, allow us to model players who hold and
process information about their opponentsin order to predict their behaviour but who, de-
pending on the situation, may feel more or less certain about these predictions. 1f ambiguity
is about two or morepossibl e characteristicsof an opponent then belief sshould bemodelled
by a capadty over the relevant type space, if ambiguity concerns the correct description
of the situation in general it is best modelled by ambiguity about the opponents’ strategy
choices. Equilibrium conceptsfor ambiguous players, likethe D SE suggested here, provide
also aunified framework, in which the completely consistent beliefs of Nash equilibrium

analysis aswell as behaviour influenced by ambiguity can be analysed.

311 Ambiguity about the strategy choice of the opponents

In traditional game-theoretic reasoning, players trust completdy their reasoning about the
rationdity of their opponents. If players believethat an opponent’s strategy is strictly dom-
inated, then they will act on the presumption that this player will never choose this strategy.
Similarly, strategies of the opponents which arenot inthe support of the capacity represent-
ing aplayer'sbelief should not inf luence this player's behaviour.

The following example illustrates that these properties are not true for DS-equilibria.

19



In Example 3.1 there are two DS-equilibria, one which describes behaviour similar to the
backward-induction Nash equilibrium. The second DSE shows that strategies of the op-
ponent with bad outcomes may inf luence the decision of a player, even if the opponents

strategy isstrictly dominated and not in the support of this player’s beliefs.

Example3.1 Frivolous lawsuits®
BeBCHUK (1988) studies legal disputes where the plaintiff threatens to go to court even
if the expected val ue of the court case is negative in order to extr act a settlement offer from

the defendant. Figure 1 represents a stylised version of this situation.
Insert FIGURE1 here

Once the patential plaintiff has threatened to go to court the defendant, D, can make an
settlement offer o which will be accepted or refuse to make an offer, no, in which casethe
plaintiff, P, has to decide whether to drop the case, d, or to go to court, c. The payoffs
reflect the incentives of the players. If the defendant makes no offer, no, and the potential
plaintiff decides not to file the suit, d, both players receive a payoff of 1. If the plaintiff
goesto court, ¢, both players obtain — 1, which reflects the negative expected value of the
court case. A settlement offer, which is accepted, yields the plaintiff a payoff of 3 and the
defendant a payoff of 0. The settlement yields the plaintiff a higher payoff than not going
to court, theincentive for the frivolous suit®.

This isa game with complete information where player 1, the defendant, hasa single type
t, the notation of which is suppressed. Hence, (p(t|no), p(tlo)) = (1,1) in any DSE.

Equilibriumbeliefsfor thetwo typesof DS equilibria of thisgameare givenin thefollowing

8 The dtructure of this game corresponds to the well-known entry game in Industria Organisation.

9 Thisexample isa dightly modified and parametrised version of the model in Bebchuk (1988), p. 441.
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table.
DS-equilibria {(vP,v]), wh,vh)}

event vP () vP () event Z40) v ()
{no} a? >0 0 {d} of >4 af <4
{o} 0 aP >0 {c} 0 0
sP 1 1 sP 1 1
0 0 0 U 0 0
support: {no} {0} support: {d} {d}

The first DSE (v, 1) describes behaviour which is similar to the backward induction
equilibrium in the analysis without ambiguity. The equilibrium beliefs need however not
be additive. The plaintiff decides nat to go to trial. Whether the defendant D will refuse
a settlement or not depends on the strength of the belief o that the plaintiff will drop the
case. For o > 1/2 the defendant will make no offer, otherwise a settlement offer is made.
Filing the suit becomes weakly optimal only if the plaintiff is completely certain that the
defendant will not refuse a settlement, v” ({no}) = 0.

The second DSE (v2, v1’) shows behaviour which cannot occur in aNash equilibrium. In
this case, the plaintiff plans to drop the case if challenged. The defendant, on the other
hand, feels sufficiently ambiguous, 4’ ({d}) = a® < 1/2, about the prediction that the
plaintiff will not file a suit, supp v5 = {d}, and will offer settlement. Such behaviour
cannot be supported by a Nash equilibrium. Yet it does not appear unreasonable. After
careful consideration of the situation, the defendant may well recognise the incentives of
the plaintiff to drop the action. This conclusion depends however on the correct perception
of the situation as modelled by the game. | f thedefendant feel s sufficiently uncer tain about
thisinformation she may be justified in offering settlement. Moreover, since the defendant
does not challenge the potential plaintiff, no information about the actual behaviour of the

plaintiff is generated. So oneisalso justified to call such a situation an equilibrium.
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From Part (b) of Definition 3.2 it is clear tha no strictly dominated strategy will be
choseninaDSE. Therefore, onemay be led to concludethat all DS-equilibriaare backward
induction equilibria. Thisconclusionisfdse however, asthe DSE (v2, v1’) in Example 3.1
demonstrates. Ambiguity may prevent playersfrom choosing strategies which exposethem
to situations wherethey might be hurt by a strictly dominated choice of the opponents. This
may be so, even if they do not expect the opponents to play strictly dominated strategies,
if they do not trust this conclusion sufficiently.

Example 3.1 shows also that the DSE concept can describe behaviour, which is incon-
sistent with the strict consistency requirements of aNash equilibrium. Indeed, behaviour,
asin equilibrium (v2, %), can occur only if the worst outcome of an interaction can in-
fluence the dedsion of aplayer even if itison eventswhich are outside the support. If one
would constrain the support notion to make events outside the support Savage-null, i.e.,
irrelevant for the player, then this equilibrium would disappear.

This is obvious from the following lemma which has been proved in Ryan (1998)

(Lemmal, p.34).

Lemma3.4 LetvbeacapacityonasetS. Anevent £ C SisSavage-null if and onlyif

V(S\E) = 1.

Applying Lemma 3.4 to the equilibrium in Example 3.1 would imply a” = o = 1.
Hence, DSE (v, v¥) would no longer bepossibleand only the DSE (v P, v1’) correspond-
ing to aNash equilibrium would survive. Indeed, Lo (1996) (Corallary of Proposition 4,
p. 468) showsthat thisis truefor all two-player games. Adopting such a strong nation of

support theref ore defeats the objective of modelling ambiguity of players.
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DSE offers more possihilities to model economic situations than traditional Bayesian
analysis because consistency requirements on beliefs are weaker. In our opinion this ad-
ditiond freedom is useful for modelling economic situations since it allows us to include
aspects of theeconomic environment, which are precluded by Bayesian analysis, but which
are supported by experimental evidence or other robust findings. It isbeyond the scope of

this paper to investigate these applicationsin depth.

312 Ambiguity and Pessimism

With convex capacities, as we assume throughout this paper, ambiguity aversion is built
into the concept of the Choquet integral. This pessimism concerns however only events
on which thereis ambiguity. DSE leaves us with more moddling options. DSE allows us
to distinguish between the preference of players for unambiguous choices and their pes-
simism in the face of ambiguity. For example, if one would like to restrict ambiguity to
an opponent’s strategic behaviour and considers information about types as hard, one can
model this by a capacity which agrees with an additive prior distribution. In this case, pes-
simismiis restricted to the behaviour of the opponent but not to the probability over types.

The following example which is due to Ryan (2002) illustrates such a modelling option®.

Example3.2 (Ryan 2002)
Consider a signalling game with two players, : = 1, 2, where player 1 can be one of two
typesT = {t1,t2}. It isknown that each type occurs with probabil ity-% . Action setsfor the

two playersare A' = {R, L} and A? = {U, D}. Figure 2 represents the game.

10 This game has been advanced in Ryan (2002) as an argument for a stronger support notion called “ robust

support”. In Eichberger and Kelsey (2001) we provide adetailed and moreformd discussion of thisapproach.
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Insert FIGURE 2 here

It iseasy to check that this game has a unique perfect Bayesian equilibriumwhere
e player 1 of typet; chooses L,

e player 1 of typet, chooses R,

e player 2 choosesU inresponseto L and R.

Ryan (2002, p.12) argues that this equilibriumdescribes the only sensible behaviour inthis
game because each type of player 1 hasa strictly dominant strategy and player 2, knowing
the strategy of both types of player 1, maximises her payoff by choosing U. Moreover, the
move U isalso recommended if player 2isambiguity averse since it guaranteesthe certain
payoff of 1 no matter what type player 1 turns out to be.

For a degree of ambiguity o < 1/2, the following beliefs (v, v?) are a DSE which agrees

with the additive prior distribution (p(t1), p(t2)) = (0.5,0.5):
vi({(t, L)}) = v ({(t2, R)}) = - 5,

vi({(t1, L), (t2, L)}) = v' ({(t1, L), (t2, L)}) = a - 3,
Vl({(tlaL)v (tl’R)}) = Vl({(t27R)7 (tQaL)}) = J2-7
Vl({(tlaL)v (tQ’L)v (t27R)}) = Vl({(tlaL)v (tQaL)7 (t27R)}) = (1+ a) ’ 12-’

v'(E)=0 forallother E C T x S*,
and 2 is an additive probability distribution with v2({( D, D)}) = 1.

One checks easily that, for o > 0, suppr! = {(t1, L), (t2, R)}. The DS-updates are
additive and always well-defined: p(t1|L) := vi(¢1|L) = 1/(2 — «) and p(t1|R) :=
vVt|R) = (1-a)/(2—a).

Computing the CEU payoffs for these beliefsyields P (L|t1,v?) = P'(R|t2,v?) = 1,
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PI(R‘tl,l/Q) = PI(L‘tQ,I/Q) =0and

1 fora=U 1
4.4=2 fora=0D for s =L
P%(alst,vt) =
1 fora=U
e for s'=R

[ 1

For o < 2/3, D isthe best response of player 2 no matter which strategy player 1 chooses,

e
[
o}
s
\
)

and L and R are the best strategies for player 1 of type ¢; and ¢, respectively. Snce the
support of vt is{(¢1,L), (t2, R)} and of 2 is { D, D}, playing D is a Dempster-Shafer
equilibrium.

For o > 2/3, (U,U) isthe best response of player 2 and the associated DSE yields the

same behaviour asthe perfect Bayesian equilibrium.

Notice that the DS-updates v (¢;|s') equal the prior distribution for « = 0, the case
of complete strategic amnbiguity A(v') = 1. For a = 1, that is complete strategic cer-
tainty A(v') = 0, the DS-updates correspond to the Bayesian updates, v* (¢,|L) = 1 and
vi(t1|R) = 0.

If thereis no strategic ambiguity, then player 1's moves provide a perfect signal for the
typeof player 1,i.e. supp v = {(t1, L), (t2, R) }, and player 2 will respond by choosing U
in response. With complete ambiguity about player 1's strategy choice, player 2will assess
the likelihood of the two typeswith the prior probability 1/2. Based on the expected payoff
with respect totheunambiguous prior distribution player 2 will find action D optimal, and
not U. Whether the action U or D is chosen depends theref ore on the degree of ambiguity
which player 2 feels about the deduced equilibriumbehaviour. If ambiguity islow, A(v') =

1—a < 1/3, then player 2 will choose U and if ambiguity ishigh shewill choose D. The
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critical level which determines when the behaviour of player 2 will change depends, of
course, on the payoff of actions.

If a player feels great ambiguity regarding the strategy of the opponent but not with
respect to the prior type distribution, then DS-updating on the observed actions leads the
player to disregard the ambiguous strategy and to decide based on the unambiguous prior.
Faced with strategic information, a player who is extremely ambiguous about strategic
information and unambiguous about type information will revert to the unambiguous in-
formation of the prior distribution®.

One can, of course, question the assumption about the unambiguous prior distribution.
Indeed, we do not require that beliefs do in generd agree with unambiguous priors. It is
an easy exercise to check that, with complete ambiguity about the prior distribution, the
argument that pessimism commends to play U in order to secure the constant payoff of 1

is correct.
3.2 Exigtenceand propertiesof DSE

Since Bayesian equilibriaare DS-equilibriawith a degree of ambiguity A = 0, existence of
aDSE is guaranteed under the usual conditions. It isnot clear however whether there exist
DS-equilibria for arbitrary degreesof ambiguity A and arbitrary prior bdiefs about types.
Proposition 3.5 shows that DS-equilibria exist under the usual assumptions for any degree

of ambiguity.

11 Ryan(2002) considers thecase o = 1/2. Inthiscase the DSE predictsplayer 2 toplay D. He sees atension
between the interpretation of Choquet preferences as pessmigtic and the preference for the action D whichis

risky rather than playing U, an action yielding a constant outcome of 1.
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Proposition 3.5 For any degree of ambiguity A € (0,1) and any additive prior proba-
bility distribution p on T', there exists a Dempster- Shafer equilibrium with this degree of

ambiguity A which agrees with the distribution p onT..

Propasition 3.5 shows that the DSE concept can be applied in all cases, in which stan-
dard Nash equilibriaexist. Moreover, it shows that one can choosethedegree of ambiguity
A exogenously as acharacteristic of asituation and still obtain DS-equilibria. Thisproperty
is particularly important in economic gpplications where one wants to study the impact of
ambiguity on the behaviour of agents’?

Games with complete information, i.e., with a type space containing a single type,
IT| = 1, form an important special case to which one can apply DSE. The DSE (v, %)
in Example 3.1 shows that behaviour in DS-equilibria does not necessarily correspond to
behaviour in backward induction equilibria.

Backward induction in the presence of Knightian uncertainty has also been discussed
by Dow and Werlang (1994). This paper shows that if there is ambiguity, there are non-
backward induction equilibria in the finitely repeated prisoner's dilemma game. These
equilibria arise with large degrees of ambiguity, which is compatible with our analysis.
Dow and Werlang (1994) anal yse gamesin normal form. Our theory confirmstheir analysis
with an extensive form sol ution concept based on K nightian uncertainty. Webelievethat an
extensiveform sol ution concept is preferabl e, since DSE requiresthat equilibrium strategies
are optimal when each move is made. A solution defined on the normal form cannat do

this.

12 Hchberger and Kelsey (2001, 2003) study gpplications to economic problems.

27



4. DSEL ASA NASH EQUILIBRIUM REFINEMENT

In Example 3.1 the DSE with little or no ambiguity selects the backward induction equi-
librium. With no ambiguity A = 0, Dempster-Shaer equilibria where each strategy of
player 1is played by some type, are perfect Bayesian equilibria (Proposition 3.3). These
results suggest that D SE equilibriawith ambiguity may provide reasonable restrictionson
beliefs, which inthe limit as ambiguity vani shessel ect Bayesian equilibria which arerobust
with respect to ambiguity. In order to explore this possibility more formdly we define a
Dempster-Shafer Equilibrium Limit (DSEL).

Ambiguity may affect beliefs over types and beliefs over strategy choice. We do not
want to exclude the possibility that ambiguity extends also to ambiguity about types, but
we will require only ambiguity about strategiesin order to dlow for capadtieswhich agree

with an additive prior distribution.
Condition A ADSE (¢!, v?) issubject to strategic ambiguity if
s x T)+ v ((SN\{s'}) x T) < 1
holds forall s' € S*.

If aDSE is subject to strategic ambiguity, then the degree of ambiguity is strictly pos-
itive, even if the equilibrium beliefs agree with an additive prior distribution over types.
Thus, Condition A allows usto consider sequencesof Dempster- Shafer equilibriawith pos-

itive degree of ambiguity which agree witha given additive prior distribution over types.

Definition 4.1 Dempster-Shafer Equilibrium Limit (DSEL)

Aset of beliefs (7', 7%) and updated beliefs {p(-|s') }s1c g1 isa Dempster-Shafer Equilib-

28



riumLimit (DSEL) if it isthelimit of a sequence of strategically ambiguous Dempster-

Shafer equilibria ((v1,v2),

n’’ n

{p,,(-]s)}s1c51) such that the degree of ambiguity ) tends to zero as n tendsto infinity.

By Proposition 3.5 there exists aDSE ((v,v2), {p,(-|s")}s1es1) for any degree of
ambiguity \,, > 0, where, for all s' € S, p, (-|s!) iswell-defined by the DS-updates
vl (-|s'). By convexity of the capacities, v (E) € [0, 1], for all events E C S¢,i = 1,2,
and for al n. Sincewe consider finitegames, thesequence (v} ,2) iscontanedin [0, 1]™,
wherem = |T'|+ |S1| +]52|. Hence, for any sequence \,, — 0 there must be aconverging
subsequence (v}, 22 ) — (v',v?) and p,,(-|s') — p(-|s') forall s' € S'. Thus, DSEL is
always well-defined.

Noticethat aD SEL requires also to spedify a sequence of updated capacities{p,, (-|s')}s1e51.
Sinceweimpose strategi c ambiguity there existsalwaysasupporting sequence of Dempster-
Shafer equilibria for which the updated beliefs {p,,(-|s')}sicst aewell defined by the
DS-updates. Even if DS-updates are well-defined along the sequence of DS-equilibria, a
DSEL ((7",7%), {p(:|s")}stest ) may have non-additive DS-updates (- |s') for strategies
st, which are not played in equilibrium.

The following example shows tha bdiefs off the equilibrium path need not be additive.

In particular, the sequence of DS-equilibria supporting a D SEL

e can be strategically ambiguous,
e ggree with an additive prior distribution and

e have well-defined DS-updates.
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Notice that a DSEL also requiresthe specification of a sequence of updaed capacities.
Yet, as the degree of ambiguity converges to zero, additive beliefs (v!,7?) obtain in the
limit, but DS-updates »(-|s') may remain non-additive if strategy s' is not played in the

DS-equilibriaof the supporting sequence.

Example4.1 Consider the signalling game, in Figure 3.
Insert FIGURE 3 here

The strategy set of player 1is A' = {L, R} and of player 2, A?> = {u,m,d}. There are
two types of player 1, T = {¢;, t2 }, which occur with probability p; and ps, p; > ps for
concreteness.

Inany perfect Bayesian equilibrium both types of player 1 choose R, sinceany belief u(-| R)
makes d strictly dominated for player 2. But if player 2 plays d with probability zero,
strategy R strictly dominates strategy L for player 1. Hence there is a unique perfect
Bayesian equilibrium where player 2 chooses u.

There are two types of DSEL agreeing with the additive prior distribution (p1,p2). The
completely additive DSEL ((Dl,ﬁ%, (’ﬁ<~|R>,7)<-|L>>) UM (t1, R) = p1, 7' (t2, R) = pa,
D(t|R) = p1, p(t2|R) = pa, 7°(u) = 1, is behaviourally equivalent to the perfect
Bayesian equilibrium. ThisDSEL is supported by a sequences of strategically ambiguous
E-capacities which agree with the prior distribution. For detailsabout the construction of
such a sequence see Eichberger and Kelsey (1999).

There is however another DSEL (7', 7°) where the updated beliefs of player 1 are not
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additive. For any « < 1/3, consider the following sequence of DS-equilibria:

E v (E)

{(tl’ )} ( )‘n) ‘D1

{(tla )} 0

{(tQa )} ( )\n)

{(t2, R) } 0 E va(E)
{(t. L), (4. R)} 1 {u} 0
{(t1, L), (t2, L)} 1— A\ {m} 0
{(t1. L), (to, R)} (A—=Ay)-py {d} (1 —Ay)
{(tla ) (t27L)} (1 — )‘n) - P2 {uvm} 0
{(t, R), (1, R) } 0 fudt | (1—A\)
{(th )v(t27 )} P2 {mvd} (1 _ )‘n)
{(tl, ),(tg, ),(tQ,R)} 1_)\n+)\'n « S 1
{( )v(t27 )v(t2aR)} D2 @ 0
{(t2, L), (t1, L), (t1, R)} | 1 =X+ X, - supp v? {d}
{(tz R).(t. L), (. R} 1711

@ 0

supp ! {(t1,L), (t2, L)}

The DS updated capacities p,, (t1|R) = vL(t1|R) = a and p, (t2|R)} = vl (t2]s1) = «
are wdl-defined, but strictly non-additive

Computing the CEU payoffs for the DSE (v}, v2), one easily checks that P1(L|t;,v2) =
1>0= PYR|t;,v?) and, for o < 1/3, P2(d|R,p,) =4>3+3-a= P2(u|R,p,) =

P2(m|R, p,) for all n. Hence, the DSEL ((#!,7%), (p(:|R), p(-|1))) ,
7' (t1, L) = p1, T'(ta, L) = p2, additive

p(t1|R) = «, p(t2|R) = «, non-additive

72 (d) =1, additive
follows from this sequence of DS-equilibriaas \,, — 0.

The DSEL (v',7?) isinteresting since belief soff the equilibrium path are non-additive,
even though beliefs on the equilibrium path are additive. Since perfect Bayesian equilib-

rium requires that beliefs be additive a all information sets, the expected payoff from
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dominaes the payoff from d. DSEL, however, allows strict non-additivity off the equilib-
rium path, so that thecertain payoff of 4 obtained from strategy d becomes more attractive.
Itis plausiblethat a player who has observed an out-of-equilibrium move will have some
doubts about his origind theory of how the game is played. This could cause him to be-
come ambiguity-averse as represented by the non-additivity of the updated bdiefs. DSEL
allows usto model ambiguity of a player as a consequence of having to update beliefs on
events with a capacity weight of zero.

Example4.1 shows alsothat there are few constraints ontheD S-updates. Indeed, DSE,
and therefore DSEL, dlow us to impose constraints on players' beliefs directly and to de-
duce equilibrium beliefs satisfying these constraints. This opens the opportunity to de-
sign experiments whereambiguity is manipulated i ndependently from the equilibrium play

which one wantsto test.
4.1 Propertiesof DSEL

Inthis section, wewill compare the concept of a DSEL with Bayesian and perfect Bayesian
equilibrium. Since Bayesian and perfect Bayesian equilibria have an additive prior dis-
tribution over types as a defining criterion we will restrict attention to Dempster- Shafer
equilibriawhich agree with an additive prior distribution throughout this section.

The capacities (7!, 7%) of a DSEL are additive. So it isnot difficult to prove tha a

DSEL isaBayesian equilibrium.

Proposition 4.2 A DSEL which agreeswith an additive prior distribution over typesis a

Bayesian equilibrium.
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All DSEL are Bayesianequilibria. The potential of strategic ambiguity to select among
the set of Bayesian equilibrium liesinthe updated beliefs. Beliefs are generated by the DS
updating rule in combination with constrai ning assumptions aout equilibrium beliefs. A
DSE does nat tie down the equilibrium beliefs as much as Nash equilibrium does. Hence,
there isroom for game-specific constraints on beliefs and attitudes towards ambiguity. De-
pending on the application one can focus on the consequences of the degree of ambiguity
aversion, of ambiguity about types or of other characteristics of beliefs. The DS-updates
inherit their properties from these fundamental assumptions. To the extent that one can
control for the degree of ambiguity, anbiguity aversion and other characteristics of an en-
vironment one may be able to test equilibrium properties in experiments.

One of the weakest refinements of Bayesian equilibriais a perfect Bayesian equilib-
rium. By making updated beliefs part of the equilibrium concept it guarantees optimising
behaviour at all information setswhether or not they will be reached in equilibrium. Since
perfect Bayesian equilibrium puts no constraint on out-of-equilibrium beliefs, it eliminates
only equilibria relying on strictly dominated strategies at information sets off the equilib-
rium path.

A DSEL allows for beliefs off the equilibrium path which are strictly non-additive.
Hence, Example 4.1 shows that aDSEL need not be aperfect Bayesian equilibrium. One
may however conjecture that aDSEL with additive updates {p(:|s')}s1 st at dl informa-
tion setsisaperfect Bayesian equilibrium. We will show below in Proposition 4.3 that this
is the case, indeed.

Onemay al so conjecture that the restrictions on beliefsinduced by the sequence of state-
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gically ambiguous Dempster-Shaf er equilibriawouldrule out DSEL with additive updates
{p(-]s")}s1es1 atalinformation setswhere aplayer uses aweakly dominated action. This
is however not true. For every perfect Bayesian equilibrium it is possible to construct a
sequence of strategically ambiguous DS-equilibria, which agree on the additive prior over
types and converges to this perfect Bayesian equilibrium. Thisis aimost obviousif all in-
formation setswill be reached intheperfect Bayesian equilibrium. If there are information
sets following actions which are not played in a perfect Bayesian equilibrium, then one
can find asequence of DS-equilibriain which the DS-updates are not defined at these in-
formation sets. Hence, one can assign the off-the-equilibrium-path beliefs of the perfect
Bayesian equilibrium tothose DS-equilibria Thus, one can obtain even a perfect Bayesian
equilibrium where player 2 chooses weakly dominated strategies off the equilibrium path

asaDSEL.

Proposition 4.3 Perfect Bayesian equilibrium and DSEL
(i) Every perfect Baysian equilibriumisa DSEL.
(ii) A DSEL which agrees with an additive prior distribution is a perfect Bayesian equi-

librium if all updates are additive.

DS-updates of a DSEL can, but need not, be additive. Proposition 4.3 shows that ad-
ditive limits of the DS-updatesisthe crucial condition for the two conceptsto coincide. If
DS-updates do not converge to additive probability distributions off the equilibrium path,
then strategic ambiguity, modelled by the DS equilibrium concept, provides a refinement
of Nash equilibrium based on other principlesthan standard refinementsin the literaure.

Mailath (1992) provides an excellent survey of therefinements most commonly usedin
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signalling games. They all operate by restricting out-of-equilibrium beliefs. Justification
for such restrictions is obtained by forward or backward induction arguments. There is an
obvioustension in such arguments because out-of-equilibrium behaviour is constrained by
reasoning about behaviour which will never be observed.

The DSEL provides an alternative approach to equilibrium selection. Moddling am-
biguity about the equilibrium strategy choices directly avoids the tension in the interpre-
tation of out-of-equilibrium beliefs. Moreover, there are behavioural theories behind the
DS-updating rule (Gilboaand Schmeidler, 1993) and the Choquet expected utility model
(Gilboa, 1987; Sarin and Wakker, 1993). Assumptions about the behavioural foundations
of this decision and updating model can and have been tested independently from the equi-

librium notion (Camerer and Weber, 1992).
4.2 Out-of-equilibrium beliefs

Refinement of the set of equilibria can be obtained by imposing additional restrictions
on the players non-additive beliefs. As in the standard refinement literature, one can
strengthen or weaken the robustness requirement imposed on Bayesian equilibrium by
putting further constraints on the sequence of ambiguous D S-equilibria which support it.
In contrast to thisliterature such assumptionsarein principle testable.
DS-equilibriawhich are not perfect Bayesian equilibriaare plausible, since they corre-
spond to casesin which player 2 is ambiguity-averse after observing an unexpected move.
Example 4.1 illustraes the potential of DSEL to select among Bayesian equilibria based
on ambiguity about the behaviour in case of an unexpected out-of-equilibrium move Yet,

evenif wedo not want to rely on non-additive beliefs off theequilibrium path, DSEL offers
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quite intuitive out-of-equilibrium beliefs.

Itisimpossible to develop here acomplete theory of reasonable refinements based on
ambiguity, but thefollowing examplemay providesome intuition. Itisasimplified version
of theeducation-signalling model introduced by Spence (1973). With plausible restrictions
on the out-of -equilibrium beliefs ambiguity may select the pooling equilibrium as the a
unique DSEL 3, The intuition about beliefsis as follows. A DS-equilibrium which agrees
with an additive prior distribution over types models a situation where aplayer feels ambi-
guity about the opponents’ behaviour but not about the prior distribution over types. This
is anatural assumptionif past experience has provided information about the frequency of
types but if there is no wdl-established way of signalling private information. In such a
situation signalling is endogenous equilibrium behaviour. An out-of-equilibrium move in-
di cates abreak-down of theimplicit understanding of equilibrium behaviour. Insuch acase,

it appears quite reasonable to return to the “firm” information about the prior distribution

over types.

Example4.2 education signalling'*
Consider two workers with different productivity, ¢ > ¢, . A worker's productivity is
private information but it is common knowledge that the proportion of high-productivity

workers is p. Workerswill apply for a position in the firm with a wage proposal. A wor ker

13 Notice that Example 4.2 is no contradiction to the result in Proposition 4.3. There are other DSEL s corre-

sponding to the typical perfect Bayesian equilibriaof the Soence signdling model.
4 Thisis ahignly stylised version of the education signalling model by Spence (1973). For smplidty of the

expogition, we have assumed that the education level isnot achoice varigble A more general treatment of the

educaion signalling model can befound in Eichbeger and Kelsey (19993).

36



can ask for a high wage wy = ¢y, alow wage wy = ¢, or the average wage w =
p- ¢y + (1 —p) - ¢,. The firm can only choose to accept the application, a, or to
reject it, ». In order to qualify for a high wage wy, a worker must present an educa-
tion certificate. The strategy wy implies that the worker has obtained this education
certificate High-productivity workers can obtain the certificate at no cost, while low-
productivity workers incur a cost of —2. Ve will assume throughout that the education
costs of the low-productivity worker are not justified by the productivity and wage differ-
ence, 0 < wy —wp = ¢ — ¢ < 2.

Figure 4 illustrates the situation.

Insert FIGURE 4 here

In the notation of Section 3, the game is described by S' = {wy,wy,w} and S? =
{s?(s")] s' € S'} and T = {H, L}. Itis easy to see that there are exactly two perfect

Bayesian equilibria:

Worker Firm out-of-equilibrium beliefs

0) (wp, H), (wr, L)) (SQ(MH)v Sz(wL)’ 5> w)) = (a,a,7), | p(H[w) = 0.

(i) ((ﬁaH)v (I_U’L)) (SQ(MH)v 52(wL)’ s? w)) - (rva’a)7 N(leH) — U(leL) =0.

For notational convenience, we have only noted the equilibrium strategies. In terms of be-
liefs, a perfect Bayesian equilibrium (71, 72, {u(-|s*)}) is described by 7! (w, H) =1,
at(wl, L) = 1 and 7%(a,a,r) = lincase (i) and 7' (w, H) = p, 7' (w, L) = 1 — p and
72(r,a,a) = 1in case (ii). Beliefsabout all other strategiesare zero.

Equilibrium (i) isthe Pareto-optimal separating equilibrium selected by theintuitive crite-
rion. Equilibrium (ii) isthe Pareto-optimal pooling equilibrium, which does not satisfy the
“intuitive’ belief condition that wy > w could only come from the high-productivity type
since only this player would gain from such a deviation relative to the equilibrium payodt.

If we assume that theprior distribution of typesis hard knowledge, whileequilibriuminfer-
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ences about behaviour are ambiguous, then only behaviour of the pooling equilibrium (ii)
canariseinaDSEL. Wewill formalisethis assumption about the beli€efs by an E-capacity®®.
E-capacities area modification of simple capacities (or distorted probabilities) which have
a constant degree of ambiguity and which allowfor marginal distributions which are addi-
tive.

Fix a common degree of ambiguity A, for both players. Denote by 1! (E) the capacity
whichequals 1 for E = S' x T and 0 otherwise and by y,,(F') the capacity equalling 1
for F = S% and 0 otherwise. A compact way to write the E-capacities based on additive

probability distributions 7! and 72 is
o VLE)i=An- D pg(B) +(1—p) - g (E)] + (1= \y) - 7' (E) for EC S' T,

o V2(F):=X, pu(F)+(1—=X\,)  -m2(F) for ' C S2.
(6)

E-capacities are a convex combination between an additive probability distribution 7% and
aweighted average of the capacities ./ with weights equal to the probabilities of the prior
distribution. Noticethat v, (E) + v2((S* x T)\E) = 1 — X\, and v2(F) + v2(S*\F) =
1 — X, holds for all events E # S x T and F # S2. Thus, there is strict ambiguity if
. > 0 holds. E-capacities have also the property that supp »? = supp’. The strategies
in the support of the capacity, i.e., the strategi esof the opponents which must beoptimal, are
the strategiesin the additive part of the E-capacity. Using Equation 3, one can compute®

the DS-update of v/}, as

An p+( Ao)-wl(st, H)
A +(1 —Ap) - [m1(s, H) +wl(st, L))
(s'

For \, > 0,vL(H|s') is well defined even if 7'

v, (Hl|s") =

JH) + 7l(s',L) = 0 holds, i.e, if

no type plays strategy s' in equilibrium. Notice also that for 7' (s', H) + 7!(s!, L) = 0,

15 Fichberger and Kelsey (1999) provideathorough study of the properties of E-capacitiesand an axiomatisation.
16 An explicit computation isin Eichberger and Kdsey (1999).
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vk (t|s') = p(t) coincides with the prior distribution. This means that a player who ob-

serves an out-of-equil ibrium move s! will update her beliefs to the prior distribution. This

property of an E-capacity which agrees with a prior distribution appears sensible if one

views the knowl edge about thetypedistribution as firm compared to the beliefs about strat-

egy choiceswhich represent just a consistency requirement for beliefs and optimal actions.

Itis easyto checkthat v, — 7' andv? — =°. Notice, however, that v}, (H|s') — p for

al s'. Hence, in the limit, we have out-of-equilibrium beliefs p(H |wy) = p(H|wy) = p.

It remains to show that the beliefsin Equation 6 based on the additive probability distrib-

utions 7' (w, H) = p, 7' (w,L) = 1 — pand 7(r,a,a) = 1 formaDSE. Thisis easily

established since supp v, = {((w, H), (w,L))}, supp v2 = {(r,a,a)} and the expected

payoff functions are:

0
PYs'|H,v2) = wr v (wp) =a) = (1-X\,) wg
| W v, (5°(w) = a) =1-) w
(wp =2) - v, (5*(wp) =a) =0
PUSIL2) = wp vl (R (wr) = a) — (1= ) wp
\ W vy, (32 (W) = a) =(1=Xn) w
and
(6, —wu) (11 for G=a
0 foo a=r
P2(@a)st,vl) = ng —w]-p ;g: gz?

wg vl (wg) =a) =

o

p-oy+(1—p)-¢,—w=0 for a=a
for a=r

ST = wH
for s'=wp
for st=w

for ' =wy
for s'=wp
for s'l=w

if sl=wg

if sl=w

Hence, choosing w isoptimal for the wor ker of either type and accepting a wage offer w

is optimal for the firm. This establishes that the bdiefs in Equation 6 form a DSE for any

n. Theresulting DSEL is therefore

Worker

Firm

out-of-equilibrium beliefs

(iii)

((w.H), (w. L))

(s (wp), s*(wp), s*(W)) = (r.a.a),

p(Hlwy) = p(Hlwp) = p.
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The equilibrium selection in the DSEL of Example 4.2 depends on the joint assump-
tions of an unambiguous prior distribution over types and a degree of ambiguity aversion
An Which, for each step n, isthe same for al events £ ¢ S! x T. Constant ambiguity
aversion controlsfor distorted bdiefs'”. Theresult that out-of-equilibrium beliefs coincide
with the additive prior distribution is driven by the assumption that the prior distribution is
unambiguously known. If thisis the case, it makes sense for a player to revert to the un-
ambiguous information asimplied by DS-updating, whenever an out-of-equilibrium move
occurs which invalidates the equilibrium behaviour prediction. In the game of Example
4.2, this assumption about the prior distribution rules out the separating equilibrium. The
separating equilibrium would require complete trust in the equilibrium behaviour because
alow-productivity worker has an incentive to break away from the separating equilibrium
and to propose the average wage rather than the low wage. To argue that the firm should
assume that an average wage offer could only come from the low-productivity type would
mean that the firm feels no ambiguity about the behaviour of the workers.

In contrast to Bayesian equilibrium, DSE has a updating rule which works also for
out-of-equilibrium beliefs if thereis some ambiguity about strategy choices. Reasonable
assumptions about belief scan be imposed directly. For example, partial information can be
assumed asin the case of awell-known prior distribution in Example 4.2. Whether thisis
an appropriate assumption or not can be assessed i ndependent from the equilibrium, which

is an advantage in economic applications.

17 To establish theresult of Proposition 4.3 tha every perfect Bayesian equilibriumis aDSEL we had to relax

this assumption of a constant degree of ambiguity in each step of the belief saquence supporting the DSEL.
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5. CONCLUSION

We have goplied the theory of Knightian uncertainty to sequential games. The evidence
suggests that there are occasions in which individuals have large degrees of ambiguity.
Degspite this we believe that an interesting case is when the degree of ambiguity is small.
Under this assumption, we have shown that our definition of equilibrium isarefinement of
Bayesian equilibrium, which is similar in spirit to perf ect Bayesi an equili briumbut does not
exactly coincide withit. Since DSEL isaspecial case of Bayesian equilibrium, noirrational
behaviour is introduced by considering non-additive beliefs. As we have shown, evenin
thelimit as beiefs converge to additive probabilities, significant deviations from behaviour
under subjective expected utility are possible off the equilibrium path. We believe this is

one of our main innovations.
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Appendix

PROOFS

Lemma 2.2: If aconvex capacity v has zero degree of ambiguity then it is additive
Proof. Supposethat v isnot additive, then there exist A, B C S, suchthat A N B = () and
v(AUB) > v(A)+v(B).LetC = S\(AU B). Then since the degree of ambiguity is
zero:

(A-1) 1=v(AUB)+v(C) >v(A)+v(B)+ v(C).

By convexity, 1 = v((AUB)U(AUC)) > v(AUB)+v(AUC)—v(A). Sincethe degree
of ambiguity iszero, v(AUB) =1 —v(C) andv(AU C) = 1 — v(B). Substituting, we

obtanl>1—-v(C)+ 1— v(B) —v(A), but this contradicts A-1.

Proposition 3.3:

a) A Dempster-Shafer Equilibrium (v, %) with adegree of ambiguity A = 0, for
which the belief of player 2, v', agrees with the additive prior distribution p on T is
aBayesian Equilibrium.

b) Consider a Dempster-Shafer Equilibrium (¢!, %) with a degree of ambiguity
A = 0, for whichthe belief of player 2, v*, agreeswith theadditive prior distribution p
onT.If for each strategy s! € S thereexistsatypet € T suchthat (s!,¢) € suppv,
then the Dempster-Shafer Equilibrium (!, %) is a perfect Bayesian equilibrium

Proof. Part (a): Sincethe DSE (7!, 72) has adegree of ambiguity A = 0, by Lemma 2.2,

7! and 72 must beadditive probability distributions. Sincethe D SE agreeswith an additive
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prior distribution pon T, Y-, .o, 7' (s*, ) = p(t) for al t € T Hence, condition DSE-a

of Definition 3.2 can be written as

foral s* € S* with7!(s',¢) > 0 and al ¢+ € T. Condition DSE-b requires

s%(s') eargmax Z p(t|st) - u?(st, a,t)
aeA? [ or

foral s* € S? with 7%(s?) > 0. By Condition DSE-c and Equation 3,

pltls) = w1 (ST x {t}[{s'} x T) = —ZL5et)

ZteT 7T1 (Sla t)

provided Y, 7' (s',t) # 0. Note that beliefs off the equilibrium path p(t[s') arearbi-

trary and need not even be additive. For actionss' € S' suchthat ), 7' (s',¢) = 0 all

actions a € A? are optimd. Hence, Part () of Propaosition 3.3 defines a Bayesian equilib-

rium with mixed strategies (7!, 72).

Part (b): If, in addition, for each strategy s' € S! theare exists atype t € T such that

(s',t) esuppn' then), 7' (s t) # Oforals' € Standp(t|s') = (x' (s, 1))/ (X ,cr 7' (s',1))
is defined at all information sets. In this case, (7!, 72) is aperfect Bayesian equilibrium.

Lemma 3.4: Let v beacapacity onaset S. Anevent E C S isSavage-null if and only if
v(S\E) = 1.
Proof. An event F isSavage-null if for any three outcomesx, i,z € X the CEU value of

theactszpy and zpy areequal, i.e.
w(z) - v(E) +u(y) - [1—v(E)] =u(y) - v(S\E) +u(2) - [1 - v(S\E)]

where we assume, without loss of generality, u(x) > u(y) > w(z). This equality can hold

forarbitrary outcomes z, y, z € X withthisorder if andonly if v(S\E) = 1andv(E) = 0.
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Proposition 3.5: For any degree of ambiguity A € (0,1) and any additive prior proba-
bility distribution p on T', there exists a Dempster-Shafer equilibrium with this degree of

ambiguity A, which agrees with the distributionp on 7.

Proof. The proof uses the special form of an E-capacity, which is extensively discussed
in Eichberger and K elsey (1999). E-capacities are modifications of an additive probability
distribution with a constant degree of ambiguity and, possibly, some additive marginal dis-
tributions. If there are no additive marginal sthen E-capacitiesaresimpl e capacities. More-
over, the support of an E-cgpacity coincides with the support of its additive part. Hence,
for given prior distributions of types and given degrees of ambiguity, E-capacities are com-
pletdy described by their additive part. Given belief's moddled by E-capecities, one can
use standard arguments to show that there is a Nash-equilibrium in mixed strategiesfor the
modified game where the Choquet payoff functions are viewed as functions of the additive
part of the E-capacities.

Fix \', A% € (0,1) and any additive probability distribution p on T'. For any finite set X
denote by A(X) the set of additive probability distributions on X. Let A,(S! x T') bethe
set of additive probability distributionson S x T with marginal distribution p on T'. This
set is non-empty, compact and convex.

Forany E C S x T let the capacity v, be defined as

(1 if S'x{t}cE
vi(E) '_{ 0 otherwise ’
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and for any m € A, (S x T') consider the capacity

(A-2) vr(E) =" p(t) v (B) + (1= A -7 (B).

teT
For any set 7’ C T, the DS-update of the capacity defined in Equation A-2 is (see Eich-
berger and Kelsey, 1999, Lemma 4.2, p. 132)

Mo pt) + (1A B ow(shh)
(A-3) vR(T'|s") = —=5 = :
Z mlsh o)+ AT [1‘ = ”(s%tﬂ

For \' > 0, v1 (T"|s') is acontinuous function of .

Forany s' € S'andanym € A, (S* x T), let

(A-4) o(m, s') =arg maxz o(a) - P?(a|s',vl)
UEA(A2>H,EA2

be the set of best behaviour strategieson A? for givenhistory s! and given belief v based
onm.

From the definition of the Choquet integral in Equation 1, it is clear that P2(a|s!, 1)
is a continuous function of the capadty ».. From the DS-update in Equation A-3 we
know that /! is a continuous function of . Thus, 2;42 o(a) - P?(alst,v}) isacontinu-
ous function of 7. Hence, by Berge’s maximum thaece)rem (e.g., Takayama, 1985, p. 254),
p(m, s') is a upper-hemi-continuous correspondence. Since A(A2) is a convex set and
since 2;42 o(a)- P?(a|s',vl)islinear in o, the correspondence p(r, s') is also convex-
val ue(;.6

Forany t € T and avector u = (u(-]s'))s1es1 of additive probability distributions
pu(s') € A(A?) define the capacities 2, (Els') := (1 — M) - u(E|s"). The capadty

v2(-|s') is continuousin p. Let

(A-5) Y(u,t) =argmax Y o(s')- P1(s'[t,v2(-[s"))
JEA(51)51651
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be the best-response correspondence for player 1. Findly, let

(A-6)  d(n):={m € Ay(S" x T)| w(s',t) =) p(t) - ou(s'), o0 € W(u, 1)}

teT
Since the Choquet integral P'(s'|t,v%(:|s")) is continuous in v (-|s"), which in turn

is continuous in , we can conclude that 12 ) o(st) - P'(st|t,v2(+[s")) is continuous
in . Moreover, the objective function isiiri:ar in o. Applying Berge’'s maximum theo-
rem again, we conclude that the correspondences v (i, t) are upper-hemi-continuous and
convex-val ued. The correspondence ¢(u) defined in Equation A-6isaconvex set for each
1 and clearly also upper-hemi-continuous.

Consider the mapping © : A, (S x T) x A(A2)IS'1 — AL (S x T) x A(A2)S"]
defined by

(m) = O(m ) == x plm, 1) x b(n).

As the Cartesian product of upper-hemi-continuous and convex-valued correspondences
O isitself a upper-hemi-continuous and convex-valued correspondence. Moreover, the set
A, (S x T) x A(A2)I5'l iscompact and convex. Hence one can apply K akutani’s fixed-
point theorem to establish the existence of (7*, u*) € O(n*, u*).
Define the additive probability distribution 7* on S2, the set of strategies of player 2, by
7*(s?) = 1H ) p*(s2(s)|st) foral s2 € S2. Foral E C S2, letv2.(E) := (1 — \?) -
T*(E). -
We claim that the capacities (v}., v2.) are a DSE. To see this, note first tha suppvl. =
{s' € S| 7*(s') > 0} and supp 2. = {s* € S?| 7%(s*) > 0} (Eichberger and K elsey,
1999, Lemmaz2.2, p. 121). Hence, (s',¢) € suppvl. impliest*(s',t) = p(t)-0¢(s') > 0
ando, € ¥(p*,t). Hence, s* must maximise P! (s'[t, v2.(-[s')). Similarly, s* € supp v2.
implies7*(s?) > 0. Hence, p*(s%(s')|s') > 0 forall s' € S*. Therefore, s?(s') must be

amaximiser of P?(als', v1.).

» P
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Finally, by construction, \* (vL.) = A' and A*(v2.) = A, Since \' and \? were chosen

arbitrarily, the existence result follows for any A € (0, 1).

Proposition 4.2: A DSEL which agreeswith an additive prior distribution over typesis a
Bayesian equilibrium.

Proof. Note first that A\ = 0 in thelimit implies that the limit capacities (v!,7?) are ad-
ditive probahility distributions. Hence, supp7' = {(s',t) € S* x T|7'(s',t) > 0}
and supp7v? = {s? € S?|7%(s*) > 0}. Moreover, v} (s',t) — D'(s',t) > 0 and
vi(s?) — T3(s?) > 0, imply vL(s',t) > 0 and v2(s?) > 0 for n large enough.
Note also that P!(s'|t,v?) is continuous in v? and P?(a|s', p) is continuous in p. If
7H({s'} x T) > 0, i.e, if the DS-update 7 (¢|s') is defined, thenp(-|s!) = T*(+[s?).
Suppose now that (v!,7?) is not a Bayesian equilibrium. Then there exists (s',t) €
suppv! suchthat P'(s'|t,7?) < P'(5'|t,7?) for somes' € S* and/or s? € suppv? such
that P?(s%(s')|s',p) < P2(als!,p) for somea € A% By continuity of P(s![t,»?) and
P2(als, p) in p and 12, respectively, we can conclude that P*(s'[t,2) < P'(s'|t,1?)
for some 3* € S! and/or P2(s*(s')|s', p,) < P2(d|s',p,) for somea € A?. Since
(s',t) € supp7v! and s? € supp7? imply that 2 (s',t) > 0 and v2(s?) > 0 for n large,

L v2)isnot a DSE.

n' n

(s',t) € suppv;, and s? € suppv? follows. Hence, (v

Proposition 4.3: Perfect Bayesian equilibriumand DSEL

(i) Every perfect Baysian equilibrium isaDSEL.

(ii) A DSEL which agreeswith an additive prior distribution isa perfect Bayesian equilib-
rium if all updates are additive.

Proof. Part (i). Theproof isconstructive. For agiven perfect Baysian equilibrium (71, 72, {u(-|s*) },1c41)
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weshow that thereisa sequence of appropriately modified E-capacites'® (v, v2, {p,, (-|s') }s1c51)
which converges to the perfect Bayesian equilibrium. The trick is to construct this se-
quence such that the Dempster-Shaer-updae of any strategy s' which is not played by

any type in the perfect Bayesian equilibrium, 7' ({s'} x T) = 0, is not defined, i.e,
vL(S'\{s'} x T) = 1. Hence one can choose the update p,,(-|s') abitrarily, in par-
ticular equal to the updae p(-|s') of the perfect Bayesian equilibrium. This sequence of
capacities (v, 12 ,{p,,(-|s)} s1c51) is aDSE by standard continuity arguments.

Suppose there is a perfect Bayesian equilibrium 71 € A(S') x A(T) with 71 (ST x

T) = Z, p(t) foral T/ C T, #* € A(S?) with (additive) out-of-equilibrium beliefs
u(-\sl)teeTA(T)forall s! € S'. Defineasequenceof DS-equilibria((vh, vy,), {p,(-|s*) }scst)
asfollows:

Consider sequences \, > 0 and A2 > 0 which converge to zero. Denoteby St C S* the

set of strategieswith Y, 7' (s',t) # 0. For any non-empty E C S'and F C T let
. 1 if S}_ xTCExF
Vo (EXF) =9 AL SY p(t) - (Ex F)+ (1—A.) -7'(E x F) otherwise :

teT
where

1 if S'x{t}CcExF
Vt(EXF)::{ 0 otherwise{}

It iseasy to check that v} isacapacity which, by construction, agrees withthe prior distri-
bution p(t). Moreover, v} — 1.

For s' € Si; 81 xT ¢ S"\{s'} x T and v}, (S'"\{s'} x T') < 1. Hence, the DS
updates v} (T'|s') are well-defined and converge to the Bayesian updates . The updates
p, (-]s') = vl (-|s") are well-defined and converge to (-|s").

On the other hand, for s' ¢ S} S1 x T C S'\{s'} x T and the DS-updates are not

defined. Hence, we can choose p,, (-|s') = u(-|st) foral ninthis case.

18 For more on E-capacities, their properties and updates, see Eichberger and K dsey (1999).
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Finally, for any subset E C S?, v2(E) = (1 — A\y) - 2 joep w2 (s2).

Itiseasy to check that thecapacitiesv'! , 2 are strategically ambiguous and that supp v} =
{(s',t)|7'(s',t) > 0} andsuppr? = {s*|r%(s?) > 0}. By continuity of P! and
P?inv2 and p,,, respectively, s! Earfl;m?x PY(3Yt,v2) for al (s',t) € suppr} and
s?(s') eargmax P?(alst,p, (-|s')) f;riiﬁ s* € suppv2.Hence ((v},v2), {p,,("|s") }s1es1)

G A2
isaDSE.

Part (ii). Consider a sequence of strategicaly ambiguous DSE (v}, 12) — (@', 77)
and, for al s; € S1, p,(:|s') converges to an additive update s(-|s'). Since 7" is addi-
tive, (s',t) € supp 7! impliesv!(s',t) > 0. Supposethereisas! € supp 7' such that
P(3Yt,v%) > P'(s'|t,v?). By continuity of P! inv? P(3'|t,v2) > P(s'|t,v2) for
large n. Moreover, for largen, v! (s, ¢) > 0 and, therefore, s' € supp v1. This contra-
dicts the assumption that (v.,22) is a DSE. Hence, ((',7%), {p(-|s')}s1cs1) sdtisfies
Condition PBE-a
Since p(-|s') is additive, an analogous argument shows that Condition PBE-b must hold
for (@', 72),

(1)} sres)- Finally, if 7 ({51} xT) = 1-51((S\{s"}) xT) > 0, then vt ((S*\{s'})x
T) < 1 for n large enough. Hence, al DS-updates are well-defined for large n and
o (T'|sY) = v (T'|s*) — p(T’|s') = 7' (T'|s"). Thus, Condition PBE-c is satisfied.
Given the assumption that the DSEL agrees with an additive prior distribution over types

it istherefore a perfect Bayesian equilibrium.
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