11,189 research outputs found

    Pair production rates in mildly relativistic, magnetized plasmas

    Get PDF
    Electron-positron pairs may be produced by either one or two photons in the presence of a strong magnetic field. In magnetized plasmas with temperatures kT approximately sq mc, both of these processes may be important and could be competitive. The rates of one-photon and two-photon pair production by photons with Maxwellian, thermal bremsstrahlung, thermal synchrotron and power law spectra are calculated as a function of temperature or power law index and field strength. This allows a comparison of the two rates and a determination of the conditions under which each process may be a significant source of pairs in astrophysical plasmas. It is found that for photon densities n(gamma) or = 10 to the 25th power/cu cm and magnetic field strengths B or = 10 to the 12th power G, one-photon pair production dominates at kT approximately sq mc for a Maxwellian, at kT approximately 2 sq mc for a thermal bremsstrahlung spectrum, at all temperatures for a thermal synchrotron spectrum, and for power law spectra with indices s approximately 4

    Young and middle age pulsar light-curve morphology: Comparison of Fermi observations with gamma-ray and radio emission geometries

    Full text link
    Thanks to the huge amount of gamma-ray pulsar photons collected by the Fermi Large Area Telescope since June 2008, it is now possible to constrain gamma-ray geometrical models by comparing simulated and observed light-curve morphological characteristics. We assumed vacuum-retarded dipole pulsar magnetic field and tested simulated and observed morphological light-curve characteristics in the framework of two pole emission geometries, Polar Cap (PC), radio, and Slot Gap (SG), and Outer Gap (OG)/One Pole Caustic (OPC) emission geometries. We compared simulated and observed/estimated light-curve morphological parameters as a function of observable and non-observable pulsar parameters. The PC model gives the poorest description of the LAT pulsar light-curve morphology. The OPC best explains both the observed gamma-ray peak multiplicity and shape classes. The OPC and SG models describe the observed gamma-ray peak-separation distribution for low- and high-peak separations, respectively. This suggests that the OPC geometry best explains the single-peak structure but does not manage to describe the widely separated peaks predicted in the framework of the SG model as the emission from the two magnetic hemispheres. The OPC radio-lag distribution shows higher agreement with observations suggesting that assuming polar radio emission, the gamma-ray emission regions are likely to be located in the outer magnetosphere. The larger agreement between simulated and LAT estimations in the framework of the OPC suggests that the OPC model best predicts the observed variety of profile shapes. The larger agreement between observations and the OPC model jointly with the need to explain the abundant 0.5 separated peaks with two-pole emission geometries, calls for thin OPC gaps to explain the single-peak geometry but highlights the need of two-pole caustic emission geometry to explain widely separated peaks.Comment: 28 pages, 20 figures, 8 tables; accepted for publication in Astronomy and Astrophysic

    Hard X-ray Quiescent Emission in Magnetars via Resonant Compton Upscattering

    Full text link
    Non-thermal quiescent X-ray emission extending between 10 keV and around 150 keV has been seen in about 10 magnetars by RXTE, INTEGRAL, Suzaku, NuSTAR and Fermi-GBM. For inner magnetospheric models of such hard X-ray signals, inverse Compton scattering is anticipated to be the most efficient process for generating the continuum radiation, because the scattering cross section is resonant at the cyclotron frequency. We present hard X-ray upscattering spectra for uncooled monoenergetic relativistic electrons injected in inner regions of pulsar magnetospheres. These model spectra are integrated over bundles of closed field lines and obtained for different observing perspectives. The spectral turnover energies are critically dependent on the observer viewing angles and electron Lorentz factor. We find that electrons with energies less than around 15 MeV will emit most of their radiation below 250 keV, consistent with the turnovers inferred in magnetar hard X-ray tails. Electrons of higher energy still emit most of the radiation below around 1 MeV, except for quasi-equatorial emission locales for select pulse phases. Our spectral computations use a new state-of-the-art, spin-dependent formalism for the QED Compton scattering cross section in strong magnetic fields.Comment: 5 pages, 2 figures, to appear in Proc. "Physics of Neutron Stars - 2017," Journal of Physics: Conference Series, eds. G. G. Pavlov, et al., held in Saint Petersburg, Russia, 10-14 July, 201

    Compton Scattering in Ultra-Strong Magnetic Fields: Numerical and Analytical Behavior in the Relativistic Regime

    Get PDF
    This paper explores the effects of strong magnetic fields on the Compton scattering of relativistic electrons. Recent studies of upscattering and energy loss by relativistic electrons that have used the non-relativistic, magnetic Thomson cross section for resonant scattering or the Klein-Nishina cross section for non-resonant scattering do not account for the relativistic quantum effects of strong fields (>4×1012 > 4 \times 10^{12} G). We have derived a simplified expression for the exact QED scattering cross section for the broadly-applicable case where relativistic electrons move along the magnetic field. To facilitate applications to astrophysical models, we have also developed compact approximate expressions for both the differential and total polarization-dependent cross sections, with the latter representing well the exact total QED cross section even at the high fields believed to be present in environments near the stellar surfaces of Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars. We find that strong magnetic fields significantly lower the Compton scattering cross section below and at the resonance, when the incident photon energy exceeds mec2m_ec^2 in the electron rest frame. The cross section is strongly dependent on the polarization of the final scattered photon. Below the cyclotron fundamental, mostly photons of perpendicular polarization are produced in scatterings, a situation that also arises above this resonance for sub-critical fields. However, an interesting discovery is that for super-critical fields, a preponderance of photons of parallel polarization results from scatterings above the cyclotron fundamental. This characteristic is both a relativistic and magnetic effect not present in the Thomson or Klein-Nishina limits.Comment: AASTeX format, 31 pages included 7 embedded figures, accepted for publication in The Astrophysical Journa

    High Energy Neutrinos and Photons from Curvature Pions in Magnetars

    Get PDF
    We discuss the relevance of the curvature radiation of pions in strongly magnetized pulsars or magnetars, and their implications for the production of TeV energy neutrinos detectable by cubic kilometer scale detectors, as well as high energy photons.Comment: 19 pages, 4 figures, to appear in JCA

    Habitat Disturbance Combined With Life History Traits Facilitate Establishment Of Rapana Venosa In The Chesapeake Bay

    Get PDF
    The veined rapa whelk (Rapana renosa) invasion of the Chesapeake Bay in the United States was first observed in 1998. Chesapeake Bay rapa whelk population demographics, age-at-length relationships, and invasion progression (temporal, spatial) from 1998 to 2009 are described. Between June 1998 and November 2009, 27,624 rapa whelks, ranging from 11- to 195 mm shell length (SL), were collected from the lower Bay. Using a Von Bertalanffy age-at-length model (R-2=0.99), the 195-mm SL whelk collected in 2007 was 26 y old, making 1981 the estimated year of first introduction. Age-frequency distributions for Ocean View, Hampton Bar, and the lower James River showed increased whelk numbers per age class and consistent representation of Age 2-3 through Age 7-8 whelks throughout the time series indicating recruitment and establishment. Whelk range expansion into James River oyster habitats began in 2004 and continued through 2009. Whelks occupy shallow areas during warmer months, move into deeper habitats during cooler months, and annually reinvade shallow areas as temperatures warm seasonally. Channels act as salinity refugia and conduits between foraging habitats. Salinity tolerances allow rapa whelk use of epifau.nal habitats bounded by the 10-12 isohalines formerly used by native oyster drills [Urosalpinx cinerea (Say, 1822); Eupleura caudata (Say. 1822)] as juveniles and infaunal habitats with salinities of 15-25 that do not overlap with native whelks (Busycotypus canailculatus, liusycon carica) as adults. Establishment was facilitated by local disturbance of native species distributions by Tropical Storm Agnes (1972)

    Oyster reefs as fish habitat: Opportunistic use of restored reefs by transient fishes

    Get PDF
    Under the Magnuson-Stevenson Fisheries Management Act of 1996, current fisheries management practice is focused on the conce_pt of Essential Fish Habitat (EFH). Application of the EFH concept to estuarine habitats relates directly to ongoing oyster reef restorat10n efforts. Oyster reef restoration typically creates complex habitat in regions where such habitat is limited or absent. While healthy oyster reefs provide structurally and ecologically complex habitat for many other species from all trophic levels including recreationally and commercially valuable transient finfishes, additional data is required to evaluate oyster reef habitats in the context of essential fish habitat. Patterns of transient fish species richness,. abundance, and size-specific habitat use were examined along an estuarine habitat gradient from complex reef habitat through simple sand bottom in the Piankatank River, Virginia. There was no clear delineation of habitat use by transient fishes along this cline of estuarine habitat types (oyster reef to sand bar). Atlantic croaker (Micropogonias undulatus), Atlantic menhaden (Brevoortia tyramws), bluefish (Pomatomus saltatrix), silver perch (Bairdiel/a chi)•soura), spot (Leiostomus xanthurus), spotted seatrout (Cynoscion regalis), striped bass (Marone saxatilis), and weakfish (Cynoscion nebulosus) were found in all habitat types examined. In general, the smallest fish were found on the sand bar, the site with the least habitat heterogeneity. As habitat complexity increased along the gradient from oyster shell bar through oyster reef, transient fish size and abundance increased. Opportunistic habitat use by this suite of generalists relates variations in habitat quality as related to habitat-specific productivity and suggests that oyster reefs may be important but not essential habitat for these fishes

    Light-curve modelling constraints on the obliquities and aspect angles of the young Fermi pulsars

    Get PDF
    In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed γ\gamma-ray emission from more than 80 young pulsars, providing light curves with high statistics. Fitting the observations with geometrical models can provide estimates of the magnetic obliquity α\alpha and aspect angle ζ\zeta, yielding estimates of the radiation beaming factor and luminosity. Using γ\gamma-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and radio emission geometry, we fit γ\gamma-ray light curves for 76 young pulsars and we jointly fit their γ\gamma-ray plus radio light curves when possible. We find that a joint radio plus γ\gamma-ray fit strategy is important to obtain (α\alpha, ζ\zeta) estimates that can explain simultaneous radio and γ\gamma-ray emission. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favoured in explaining the observations. We find no evolution of α\alpha on a time scale of a million years. For all emission geometries our derived γ\gamma-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. For all models, the correlation between γ\gamma-ray luminosity and spin-down power is consistent with a square root dependence. The γ\gamma-ray luminosities obtained by using our beaming factors not exceed the spin-down power. This suggests that assuming a beaming factor of one for all objects, as done in other studies, likely overestimates the real values. The data show a relation between the pulsar spectral characteristics and the width of the accelerator gap that is consistent with the theoretical prediction for the Slot Gap model.Comment: 90 pages, 80 figures (63 in Appendices), accepted for publication in Astronomy and Astrophysic
    corecore