Thanks to the huge amount of gamma-ray pulsar photons collected by the Fermi
Large Area Telescope since June 2008, it is now possible to constrain gamma-ray
geometrical models by comparing simulated and observed light-curve
morphological characteristics. We assumed vacuum-retarded dipole pulsar
magnetic field and tested simulated and observed morphological light-curve
characteristics in the framework of two pole emission geometries, Polar Cap
(PC), radio, and Slot Gap (SG), and Outer Gap (OG)/One Pole Caustic (OPC)
emission geometries. We compared simulated and observed/estimated light-curve
morphological parameters as a function of observable and non-observable pulsar
parameters. The PC model gives the poorest description of the LAT pulsar
light-curve morphology. The OPC best explains both the observed gamma-ray peak
multiplicity and shape classes. The OPC and SG models describe the observed
gamma-ray peak-separation distribution for low- and high-peak separations,
respectively. This suggests that the OPC geometry best explains the single-peak
structure but does not manage to describe the widely separated peaks predicted
in the framework of the SG model as the emission from the two magnetic
hemispheres. The OPC radio-lag distribution shows higher agreement with
observations suggesting that assuming polar radio emission, the gamma-ray
emission regions are likely to be located in the outer magnetosphere. The
larger agreement between simulated and LAT estimations in the framework of the
OPC suggests that the OPC model best predicts the observed variety of profile
shapes. The larger agreement between observations and the OPC model jointly
with the need to explain the abundant 0.5 separated peaks with two-pole
emission geometries, calls for thin OPC gaps to explain the single-peak
geometry but highlights the need of two-pole caustic emission geometry to
explain widely separated peaks.Comment: 28 pages, 20 figures, 8 tables; accepted for publication in Astronomy
and Astrophysic