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HABITAT DISTURBANCE COMBINED WITH LIFE HISTORY TRAITS FACILITATE

ESTABLISHMENT OF RAPANA VENOSA IN THE CHESAPEAKE BAY

JULIANA M. HARDING1,2* AND ROGER MANN1

1Department of Fisheries Science, Virginia Institute of Marine Science, College of William and Mary,
P.O. Box 1346, Gloucester Point, VA 23062; 2Department of Marine Science, Coastal Carolina
University, P.O. Box 261954, Conway, SC 29528

ABSTRACT The veined rapa whelk (Rapana venosa) invasion of the Chesapeake Bay in the United States was first observed in

1998. Chesapeake Bay rapa whelk population demographics, age-at-length relationships, and invasion progression (temporal,

spatial) from 1998 to 2009 are described. Between June 1998 and November 2009, 27,624 rapa whelks, ranging from 11- to

195-mm shell length (SL), were collected from the lower Bay.Using a VonBertalanffy age-at-lengthmodel (R2¼ 0.99), the 195-mm-

SL whelk collected in 2007 was 26 y old, making 1981 the estimated year of first introduction. Age-frequency distributions for

Ocean View, Hampton Bar, and the lower James River showed increased whelk numbers per age class and consistent

representation of Age 2–3 through Age 7–8 whelks throughout the time series indicating recruitment and establishment. Whelk

range expansion into JamesRiver oyster habitats began in 2004 and continued through 2009.Whelks occupy shallow areas during

warmer months, move into deeper habitats during cooler months, and annually reinvade shallow areas as temperatures warm

seasonally. Channels act as salinity refugia and conduits between foraging habitats. Salinity tolerances allow rapa whelk use of

epifaunal habitats bounded by the 10–12 isohalines formerly used by native oyster drills [Urosalpinx cinerea (Say, 1822);Eupleura

caudata (Say, 1822)] as juveniles and infaunal habitats with salinities of 15–25 that do not overlap with native whelks (Busycotypus

canaliculatus, Busycon carica) as adults. Establishment was facilitated by local disturbance of native species distributions by

Tropical Storm Agnes (1972).

KEY WORDS: veined rapa whelk, Rapana venosa, Chesapeake Bay, invasion, muricid, age growth

INTRODUCTION

Establishment of an invasive species in a receptor habitat is
facilitated by a combination of life history traits that promote
rapid propagation and distribution of both progeny andmature

individuals, physiological tolerances that are suited to receptor
environmental conditions at relevant temporal scales (diurnal,
seasonal, annual), and ecological characters that allow invaders

to compete with local species for space and food resources
(Elton 1958, Bufford & Daehler 2011). Within the receptor
communities, interspecific and species–habitat relationships

across temporal and spatial scales are vulnerable to natural
(e.g., weather and climate effects) and anthropogenic (e.g., natural
resource harvest, shoreline development, dredging) distur-
bances in both isolation and combination. Disturbance has

the potential to ‘‘reset’’ ecological interactions as well as envi-
ronmental conditions across spatial scales providing opportuni-
ties for invasions. Invaders are common in disturbed habitats

(Herbold & Moyle 1986, Hobbs 1989, Williamson 1996, Shea &
Chesson 2002, Bugnot et al. 2016), particularly in estuaries
(Carlton 1989, Ruiz et al. 1997, Ruiz et al. 2000, Preisler et al.

2009).
The Chesapeake Bay is a geologically young, dynamic

ecosystem with a recent history of extensive disturbance from

the terrestrial watershed (e.g., deforestation for agriculture,
shoreline modification, and urbanization, major port develop-
ment; Sprague et al. 2006) to estuarine water column eutrophi-
cation (Cooper & Brush 1993, Zimmerman & Canuel 2002) and

benthic ecology (e.g., oyster population declines with loss of
associated complex habitat and associated trophic changes;
Baird &Ulanowicz 1989, Ulanowicz & Tuttle 1992, Coleman &

Bratton 2003, Mann 2006). The Bay is also home to major
international ports, insuring a continuing influx of hull fouling

and ballast water–associated invaders (Carlton & Geller 1993,
Carlton & Hodder 1995, Cohen & Carlton 1998, Carlton 1999,
Mann&Harding 2000, Fofonoff et al. 2003,Mann 2006, Albert

et al. 2013, Ruiz et al. 2013). The veined rapa whelk [Rapana
venosa (Valenciennes, 1846)] invasion into the Chesapeake Bay
via ballast water introduction, from discovery in 1998 through

2009 (Harding & Mann 1999), is described herein.
The rapa whelk is a predatory muricid gastropod, which is

native to the Sea of Japan and Korean coastal waters (Tsi et al.
1983). It was introduced to the Black Sea post-World War II

(Drapkin 1963, Chukchin 1984, Zolotarev 1996) and subse-
quently spread to the Aegean, Adriatic, and Mediterranean
Seas (Mann et al. 2004) as well as the Rio de la Plata (Pastorino

et al. 2000, Giberto et al. 2006) and the North Sea (Vink et al.
2005). Rapa whelk life history includes several noteworthy
differences with native Chesapeake muricids (summarized by

Harding et al. 2007a) including pelagic larvae, a life span
exceeding 15 y, maximum shell lengths (SL) greater than
180 mm with the potential to reach a size refuge from predation
at 60–80 mm SL (Harding 2003), and annual individual

fecundities of at least 1 million offspring (Harding et al.
2007a, 2008). These life history traits promote successful
colonization postintroduction. Additionally, rapa whelks enjoy

apparent immunity from the castrating effects of tributyltin-
induced imposex (Mann et al. 2006, Harding et al. 2013,
Harding et al. 2016).

Rapa whelks were introduced to the Chesapeake Bay by
ballast water transport of veliger larvae from the Black Sea
(Mann & Harding 2000, Chandler et al. 2008). Beyond the

presence of an additional muricid gastropod in the lower Bay to
compete with the native oyster drills (Urosalpinx cinerea, Eupleura
caudata), rapa whelks are cause for concern ecologically because
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their prey field and foraging habitats change ontogenetically
(Harding 2003, Harding et al. 2007b). Rapa whelk ontogenetic

changes in resource use do not have an analog in the aboriginal
Chesapeake fauna. Rapa whelk life history transitions encompass
a sequence of food and space resources and accompanying
competitive interactions and facilitate escape or relief strategies

based on whelk SL. Black Sea nearshore benthic bivalve guild
decimation by rapa whelks within 20 y postintroduction (Drapkin
1963) fundamentally altered local food webs much like zebra

mussels [Dreissena polymorpha (Pallas, 1771)] have transformed
ecosystem dynamics in the Laurentian Great Lakes (Cuehl &
Anguillar 2013). Chesapeake Bay rapa whelks co-occur spatially

with native oyster [Crassostrea virginica (Gmelin, 1791)]; northern
quahogs [Mercenaria mercenaria (Linnaeus, 1758)]; blue crab
[Callinectes sapidus (Rathbun, 1896)]; oyster drills, and whelk
[Busycotypus canaliculatus (Linnaeus, 1758); Busycon carica

(Gmelin, 1791)] populations during their life cycles thus insuring
competition for resources. At decadal scales, competition between
invasive species and native fauna dictates establishment and the

invader�s range.
Chesapeake Bay rapa whelk population dynamics and

distribution between 1998 and 2009 are described. Whelk

collections were made in collaboration with commercial fisher-
men demonstrating the power of an expanded collection
network of trained individuals as partners when an invasive

species is susceptible to commercial fishing gear and a predator
on targeted commercial species. The objectives were to docu-
ment (1) Chesapeake Bay Rapana venosa population demo-
graphics and age-at-length relationships and (2) the temporal

and spatial invasion progression from 1998 to 2009 as influ-
enced by extant environmental conditions. The hypothesis that
rapa whelk distribution is bounded by a lower salinity threshold

of 12–15 (Golikov 1967, Tsi et al. 1983, Rubinshtein & Hiznjak
1988, Mann & Harding 2000), similar to the historic distribution
of Urosalpinx cinerea and Eupleura caudata (salinity minimum of

9–12, Zachary &Haven 1973, with preference for salinities greater
than 15; Menzel & Nichey 1958), is evaluated.

MATERIALS AND METHODS

Sources of Wild Whelk Samples

The Virginia Institute of Marine Science (VIMS) bounty
program for Rapana venosa accepted whelks that were found in
the Virginia portion of the Chesapeake Bay (Tables 1 and 2,

Fig. 1) from September 1998 through September 2009. Whelks
were usually collected as bycatch in the commercial blue crab,
northern quahog, and/or eastern oyster fisheries. The collection

location, date, status (live, dead with tissue, shell only), and SL
(maximum distance from the top of the spire to the bottom of
the columella, mm) were recorded at the time of donation. The
collection site substrate type was also reported for many

whelks. The first rapa whelk collections were made in June 1998
by VIMS Trawl Survey staff near the Monitor–Merrimac
Bridge–Tunnel (MMBT, Fig. 1, Harding & Mann 1999).

Collection locations were grouped according to tributary or
region (Tables 1 and 2, Fig. 1). Each region was considered as
a unique unit, but whelks aremobile and it is possible for whelks

tomove between regions as planktonic larvae, benthic juveniles,
and/or adults. The degree of larval connectivity between regions
is related to physical oceanography (Wood & Hargis 1971,

Mann 1988, Mann & Harding 2000) as well as larval whelk
biology and settlement behavior (Mann & Harding 2003,

Harding 2006). Juvenile and adult whelk movement remains
poorly understood although migration between adjacent re-
gions occurs.

Several assumptions were made to consider all bounty

donations as a group rather than on a fishery-by-fishery basis.
First, although whelk ‘‘catchability’’ varied with gear (crab pot,
crab dredge, patent tong, oyster dredge/scrape), catchability

remained relatively the same across years because the same
fisheries contributed each year, that is, no whelk size class was
potentially omitted from sampling within a year. The contrib-

uting fisheries covered the same spatial area each year regardless
of whelks (by-catch). Relative increases (trends) in whelk
abundance from a basin over time were due to an increase in
regional whelk abundance (numbers) rather than a change in

fishery effort. Finally, there was/is a lag between whelk re-
cruitment to the benthos and whelk recruitment to fishing gear.
All fishing gear selectively caught whelks with SL greater than

50–70 mm. Relatively low incidence of whelks smaller than
approximately 50 mm SL does not mean that they were not
present. Relatively rare encounters with whelks less than 50 mm

SL almost certainly means that smaller whelks were consistently
undersampled by the available sampling methods. A second,
less likely, possibility is that smaller whelks had migrated from

the specific habitat area(s) where the fisheries were active during
fishing. Rapa whelks begin using infaunal rather than epifaunal
habitats for at least a portion of the time at approximately
50 mm SL as their prey preferences and relative vulnerability to

predators changes with changing SL (Harding 2003).

Whelk Culture at Ambient Conditions

Larval rapa whelks were cultured from egg masses at

ambient Chesapeake Bay conditions between July and Septem-
ber 2005. After settlement, these juvenile whelks were cultured
in ambient flow-through conditions through maturity with
subsequent growth until September 2007. Whelks always had

access to two or three prey items [e.g., oysters, mussels
Geukensia demissa (Dillwyn, 1817); Modiolus sp. (Lamarck,
1799); Mytilus sp. (Linnaeus, 1758), northern quahogs] per

individual and were thus not food limited. Monthly cultured
whelk SL measurements combined with egg capsule deposition
observations provide a guide for establishing maturity (onset of

egg mass deposition) as well as age-at-length relationships for
Chesapeake Bay rapa whelks less than 100 mm SL.

Data Analyses

All rapa whelks including empty shells, shells occupied by
hermit crabs, and shells for which lengths could not accurately
be measured have been included in the descriptions of whelk

presence/absence by basin and year. A total of 27,624 rapa
whelks were collected between June 1998 and November 2009
(Tables 1 and 2). Of these, 85% (23,375) were whelks that were

either live or recently deceased (tissue still present in the shell)
when collected (Table 3).

Wild Whelk Demographic Analyses

Demographic analyses include only whelks with tissue (live
or recently deceased, hereafter referred to as live whelks) for
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which an accurate SL could be recorded. Empty rapa whelk
shells or rapa whelk shells occupied by hermit crabs [usually

Clibinarius vittatus (Bosc, 1802); Harding & Mann 1999) were
not included because the longevity of a rapa whelk shell
postmortem is unknown. Inclusion of these whelk shells in the

demographic analyses would potentially introduce error by
considering whelks from previous years. Live whelks with
damaged shells were also not included in demographic analyses
because their SL could not be estimated accurately.

Annually, most live whelks (63.5%) were collected between
January 1 andMay 31 (Table 4).Whelk shell growth was assumed
to be less than 5 mm in total between January 1 and May 31

because whelks grown at VIMS less than 70 mm SL did not begin
seasonal shell deposition until late March or April (Fig. 2) and
would not likely have increased SL by more than approximately

2 mm prior to May 31. Thus, only whelks collected between
January 1 and May 31 were used in demographic analyses to en-
sure that whelks in similar growth conditions were compared.

The majority of live whelks were collected from Ocean View
(OV), Hampton Bar (HB; between the Hampton Roads Bridge

Tunnel and the MMBT), and James River non-oyster bar
habitats between the MMBT and the SR-258 bridge [James
River shipyard (JRship); Tables 1, 2, and 5, Fig. 1]. The

collection methods used at OV, HB, and JRship did not sample
the anthropogenic hard substrates (pilings, seawalls, tunnels,
rip-rap). These regional data sets had enough whelks to analyze
the demographic data using 5-mm-SL classes (Tables 1, 2, and 5).

Kolmogorov–Smirnov two sample tests (Sokal & Rohlf
1981) were used to test for differences in whelk SL demograph-
ics (5-mm-length classes) between OV, HB, and JRship within

years. With one exception (described below), collections within
these region and year combinations had sample sizes of more
than 40 live whelks per 5-mm-length class and thus the large

sample formulation for the Kolmogorov–Smirnov test statistic
(D; Sokal & Rohlf 1981, Eq. 13.5, p. 445) was used. Whelk
length demographics fromOV,HB, and JRship (January–May)

TABLE 1.

Summary of lower Chesapeake Bay Rapana venosa collection locations (Fig. 1), year of first collection, and observed SL range.

Tributary or region

(abbreviation) Description

Year of first

collection Total n Min SL Max SL

Atlantic Ocean Within sight of land east and either north or south of Cape

Henry and Cape Charles

2000 5 101 140

Eastern Shore Tributaries entering on the Bay�s eastern shoreline 2000 5 95 118

Chesapeake Bay mainstem Chesapeake Bay between Cape Henry and Windmill Pt at

the Rappahannock River mouth

1998 305 71 185

Lynnhaven Inlet 1999 59 94 150

OV Inshore of the Thimble Shoals and Norfolk Channels along

the Southern Bay shoreline extending from Lynnhaven

Inlet to the HRBT

1998 7,241 49 195

Little Creek 1998 77 116 140

James River (JRship, HB,

zones 1, 2, and 3)

JR includes the JR from Chesapeake Bay to DWS. JR

regions include (1) HB (in between the HRBT and the

MMBT at NNP), (2) the ‘‘lower’’ JRship parallel to

Newport News Shipyard and coal terminals (between the

SR 258 bridge and MMBT), and (3) the ‘‘upper’’ JR

(between the SR 258 bridge and DWS near Mulberry Pt

1998 16,482 11 183

Lafayette River Tributary draining into HB; south of Norfolk Naval base 1998 412 67 156

Elizabeth River Tributary draining into HB 2001 376 41 159

Buckroe Beach Buckroe Beach is on the western Bay shoreline inshore of

the Thimble Shoals channel, immediately north of the JR

1998 309 58 165

Grandview Grandview is on the western Bay shoreline inshore of the

Thimble Shoals channel north of Buckroe Beach but

south of the Back River mouth. Buckroe Beach and

Grandview are separated by the mouth of Salt Pond

2001 19 53 171

Back River 1999 59 93 162

Poquoson River 2001 9 96 153

York River 1998 89 76 160

Mobjack Bay 2001 176 76 169

Rappahannock River 1998 2 130 142

Chesapeake Bay:

Windmill Pt to Smith Pt

This area includes Virginia waters around Tangier Island

and Pocomoke Sound and up to the Potomac River

mouth

2000 3 125 146

Unknown Specimens for which the collection location was unclear NA 3,114 49 168

Total number of rapa whelks collected 27,622

Total n, the total number of whelks collected by region from 1998 to 2009; min SL, the region-specificminimum recorded shell length (mm);max SL,

the region-specific maximum recorded shell length (mm); NA, not applicable; HRBT, Hampton Roads Bridge Tunnel; JR, James River; Pt, point;

NNP, Newport News Pt. Regions where enough whelks were collected to use in demographic analyses have been assigned abbreviations. Year- and

region-specific whelk collections are described in Table 2.

CHESAPEAKE BAY RAPA WHELK INVASION 887



were not significantly different from each other within each

year between 1999 and 2009 (Table 6) with the exception of
OV–JRship habitats for 2007 (n ¼ 88, low JRship sample size).
Thus, the length data from these three regions were pooled and
compared across years with Kolmogorov–Smirnov two sample

tests and used to describe the wild whelk age-at-length relation-
ship in the next section.

Rapa Whelk Age-at-Length Relationship

Rapa whelk age-at-length estimations based on wild whelk

collections for whelks up to 170 mm SL were made using the
cohort analysis method described by Bhattacharya (1967). Wild
whelk age-at-length estimates from these cohort analyses were

offset to reflect an estimated hatch date of July 1 and an

estimated collection date ofMarch 15. The estimated hatch date
is midway through the observed Chesapeake Bay spawning
season (Harding et al. 2007a, 2008). The estimated collection
date is midway between January 1 and May 31. The offset

(9.5 mo/12 mo or 0.792 y) reflects the fact that whelks had not
yet completed a full year of growth relative to their hatch date
when collected.

The adjusted age-specific SL estimates were used to describe
Chesapeake Bay wild rapa whelk population age-at-length
relationships using the Von Bertalanffy (Von Bertalanffy

1938) growth model (Eq. 1). The Von Bertalanffy model has
been used to describe age-at-length relationships in other gastro-
pods that attain maximum SL in excess of 100 mm [e.g., Lobatus

TABLE 2.

Total number of rapa whelks collected by year including all types (live, dead, shell only, shell with hermit crab) and all months.

Region 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 Total

Atlantic Ocean 1 1 1 1 1 5

Eastern Shore 2 2 1 5

Chesapeake Bay mainstem 4 3 5 6 60 28 17 21 129 32 305

Lynnhaven Inlet 2 11 3 3 40 59

OV 125 81 193 683 536 699 947 456 611 901 943 1,066 7,241

Little Creek 1 2 25 18 19 5 3 4 77

James R

HB 12 158 22 859 842 368 764 501 619 599 650 1,724 7,118

JRship 60 155 132 114 399 146 402 2,757 1,016 265 467 757 6,670

Zone 1

Nansemond R 1 56 17 431 576 109 1 337 1,528

Nansemond Ridge (NR) 1 8 64 73

High Shoal (HS) 8 2 10

Cruiser�s Shoal (CS) 11 13 11 35

Dog Shoal (DS) 9 9

Brown Shoal (BS) 13 98 12 43 46 212

Thomas Rock (TR) 5 1,187 405 69 143 331 2,140

Miles Watch House (MW) 81 81

Gum Rock (GR) 50 3 25 78

White Shoal (WhS) 2 15 1 3 21

Warwick R 15 31 46

Zone 2

Days Point (DP) 15 15

Wreck Shoal (WS) 4 4

Zone 3

Burwell �s Bay* 2 2

Pt of Shoals (PS) 3 3

DWS 11 11

Lafayette R 7 14 31 2 74 15 39 61 22 39 108 412

Elizabeth R 12 2 98 30 15 54 165 376

Buckroe Beach 31 3 57 46 24 25 27 40 40 7 9 309

Grandview 2 1 3 2 2 9 19

Back R 1 15 1 12 8 2 3 3 3 11 59

Poquoson R 3 2 2 2 9

York R 1 5 6 6 9 26 8 4 16 8 89

Mobjack Bay 14 125 4 1 1 2 10 17 2 176

Rappahannock R 1 1 2

Ches Bay: Windmill Pt to Smith Pt 2 1 3

Unknown 8 0 112 74 23 368 400 486 234 629 515 265 3,114

Total whelks 251 421 540 1,917 2,104 1,831 3,048 4,943 2,672 2,660 2,744 4,491 27,622

R, river; Pt, point. James River oyster substrate collections (italicized) were assigned to salinity zones using Haven and Fritz (1985).

* Burwell�s Bay extends from Mulberry Pt to approximately Wreck Shoal (Fig. 1) and is useful only as a general designation versus a specific

location.
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Figure 1. The U.S. mid-Atlantic coast with focus on the Chesapeake Bay rapa whelk range. Regions discussed in text and Tables 1 and 2 are identified.

The three James River salinity zones are indicated (dark grey). Zone 1 includes oyster substrate within the JRship region and at the Nansemond River

mouth as discussed in text. Abbreviations follow Tables 1 and 2.
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(¼Strombas) gigas (Linneaus, 1758), Appledorn 1988; Busycon

carica, Eversole et al. 2008;Busycotypus canaliculatus, Peemoeller&
Stevens 2013], as well as numerous fish species. It assumes an initial

SL of zero, reduction in SL growth rates with age, and attainment
of a maximum terminal size (Linf).

Lt ¼ Linf 1–e – K t–t0ð Þ
h i

(1)

where Lt is SL at age t, Linf is the maximum asymptotic SL, K is
the coefficient that describes the maximum growth rate to attain

Linf and t0 is the age when SL is zero or an approximation of
hatching time.

Twenty-six whelks between 170 and 196 mm SL were
collected during the time series. The cohort analysis techniques
of Bhattacharya (1967) require continuous and consecutive

populations of length bins to estimate age-at-length. These
larger SL classes did not satisfy this requirement (Fig. 3).

Application of the Von Bertalanffy model to adjusted age-specific
SL estimates for whelks less than 170 mm SL resulted in

a maximum SL prediction (Linf) of 173 mm (Table 7), more

than 20 mm less than the actual largest Chesapeake Bay rapa

whelk collected. To include the larger whelks in the age-at-

length estimate and more accurately parameterize the maxi-

mum attainable size (Linf), annual growth rates were estimated

for SL bins 170–174.9 (3 mm/y), and 175–179.5 mm as well as

180–184.9, 185–189.9, and 190–195 mm (2 mm/y for each) and

whelks were assigned to an age class after the appropriate

seasonal adjustment described above. These growth rate esti-

mates are based on reductions in annual shell growth each year

after Age 12–13 indicated by the Von Bertalanffy fit for only

whelks less than 170 mm SL (Table 7, Fig. 4).

Cultured rapa whelk age–length data (Fig. 2) were used to
validate predicted age-at-length relationships for wild whelks

less than 100 mm SL (Fig. 4) and provide information on

length-at-maturity. Age-specific analysis of variance

(ANOVA) were used to test for differences in SL-at-age

between cultured and wild whelks. Shell lengths satisfied

assumptions of homogeneity of variance and normality without

TABLE 3.

Proportion of all rapa whelks by year and month that were live or recently deceased at collection ($ live + dead with tissue).

Month

Year January February March April May June July August September October November December

1998 NW NW NW NW NW 1.00 NW 0.56 0.75 0.79 0.90 0.98

1999 0.95 0.86 0.67 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.94

2000 1.00 0.91 0.82 0.98 0.95 0.89 1.00 1.00 NW 1.00 0.94 1.00

2001 0.57 0.03 NW 0.99 0.99 0.93 0.93 0.88 0.86 0.89 1.00 0.81

2002 0.68 0.72 0.82 0.99 0.95 0.88 0.84 0.62 0.51 0.69 0.83 0.82

2003 0.80 0.94 0.65 0.92 0.97 0.89 0.32 0.93 0.50 0.80 0.86 0.70

2004 0.57 0.67 0.63 0.96 0.96 0.98 0.99 1.00 1.00 1.00 0.93 0.85

2005 0.53 0.33 0.42 0.78 0.90 0.77 0.83 0.72 0.82 0.57 0.77 0.33

2006 0.36 0.48 0.64 0.92 0.87 0.76 0.65 0.67 1.00 0.42 0.63 NW

2007 0.81 0.52 0.67 0.87 0.98 0.84 0.76 1.00 0.58 0.30 0.86 0.93

2008 0.52 0.70 0.88 0.95 0.84 0.91 0.87 0.75 NW 0.71 0.91 0.58

2009 0.44 0.92 0.64 0.95 0.89 0.93 0.79 0.77 0.90 NW 1.00 NW

NW, no whelks donated.

TABLE 4.

Number of live ($ live whelks + dead whelks with tissue) rapa whelks by year and month across all locations and habitat types.

Month

Year January February March April May June July August September October November December Total

1998 NW NW NW NW NW 2 NW 4 3 22 9 195 235

1999 39 101 6 52 139 4 24 2 6 4 4 15 396

2000 8 50 167 57 118 34 23 3 NW 2 15 9 486

2001 4 1 NW 623 851 228 51 30 6 8 12 25 1,839

2002 56 64 94 915 323 211 121 8 48 9 30 9 1,888

2003 16 15 22 144 911 147 129 37 2 4 6 32 1,465

2004 8 42 127 758 816 543 347 59 8 73 27 41 2,849

2005 29 56 99 295 949 857 554 232 18 163 336 69 3,657

2006 64 94 316 535 310 313 227 38 1 5 24 NW 1,927

2007 42 11 112 583 738 349 223 25 67 24 48 13 2,235

2008 22 39 162 1,435 302 102 177 114 NW 42 30 14 2,439

2009 8 22 23 995 1,077 843 801 162 27 NW 1 NW 3,959

Total 296 495 1,128 6,392 6,534 3,633 2,677 714 186 356 542 422 23,375

NW, no whelks collected.
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transformation. Fisher�s test was used for a post hoc multiple
comparison.

The resulting Von Bertalanffy growth model (R2 ¼ 0.99 based

on measurements of 13,749 individual whelks; Table 7, Fig. 4)
was used to predict annual age-frequency distributions for the
combined OV–HB–JRship region. Shell lengths were converted to

ages for individual whelks using Eq. 2 (Bartoo& Parker 1983) and
the Von Bertalanffy model coefficients calculated above.

t¼ t0 + ln
1– Lt

Linf

� �

–k

2
4

3
5 (2)

The resulting age-frequency distributions from 1999 to 2009
were compared between years with Kolmogorov–Smirnov two
sample tests.

Spatial Invasion Trends

James River: Newport News Point to SR-258 Bridge (JRship)

The James River reach between Newport News Point and
the SR-258 bridge (JRship, Fig. 1) encompasses soft bottom

habitats used by infaunal bivalves such as northern quahogs (Mann
et al. 2005) as well as habitats that are primarily oyster shell and/or
living oysters (Haven et al. 1978, Mann et al. 2005, 2009b). Rapa

whelk SL collected from oyster and nonoyster habitats within this
region were compared to evaluate potential habitat use differences
with length. Whelk length data satisfied neither homogeneity of
variance nor normality regardless of the transformation (natural

logarithm, logarithm, reciprocal, square root). Thus two Kruskal–
Wallis tests were used to evaluate the effects of year and substrate
type on observed rapa whelk SL. Years 1999 and 2000 were not

included because the number of whelks collected from shell sub-
strates in these years was 0 and 3, respectively.

Elizabeth and Lafayette Rivers

The Elizabeth and Lafayette Rivers join theHB region of the

lower James River (Fig. 1). The Lafayette River has a narrow
channel of approximately 3 m depth, whereas the Elizabeth
River channel is maintained at 6–7 m depth to support the

commercial and federal facilities that line the river banks. Both
tributaries have substrate and food (oysters, northern quahogs)
resources for rapa whelks. These tributary-specific demo-

graphic trends describe the time series of range expansion from
the lower James River. Relatively low whelk numbers from the
Lafayette (total n ¼ 91) and Elizabeth River (n ¼ 287) from
January to May precluded river-specific SL demographic

analyses using two sample Kolmogorov–Smirnov tests; how-
ever, a box-whisker plot for Lafayette and Elizabeth River
whelk SL during 2005 and 2009 (when more than five whelks

were collected from both tributaries) shows overlap between the
tributary-specific SL frequency distributions (Fig. 5). Thus, SL
frequency distributions from these tributaries were pooled for

presentation and analyses. Two sample Kolmogorov–Smirnov
tests were used to compare SL frequency distributions for 2002,
2003, 2005, 2007, and 2009 when more than 40 whelks were

Figure 2. Age-at-length relationship for rapa whelks cultured under

known growth conditions at the VIMS from hatch through settlement,

maturity, and subsequent growth until September 2007.

TABLE 5.

Rapa whelks from OV, HB, and JRship as a proportion of the

total live whelks caught from January through May from

1999 to 2009.

Year January February March April May

1999 1.00 0.99 1.00 0.92 0.97

2000 0.75 0.96 1.00 0.63 0.12

2001 1.00 1.00 NW 0.92 0.89

2002 1.00 1.00 0.96 0.80 0.90

2003 0.94 1.00 0.50 0.98 0.70

2004 0.88 0.93 0.87 0.81 0.65

2005 1.00 0.84 0.78 0.84 0.53

2006 0.94 0.74 0.64 0.82 0.57

2007 0.40 0.73 0.95 0.61 0.68

2008 0.95 0.36 0.73 0.83 0.66

2009 1.00 0.77 1.00 0.91 0.90

NW, no whelks collected.

TABLE 6.

Summary of two sample Kolmogorov–Smirnov tests between
OV, HB, and JRship across years.

Year OV–HB OV–JRship HB–JRship

1999 ND ND ND

2000 ND ND ND

2001 ND ND ND

2002 ND ND ND

2003 ND ND ND

2004 ND ND ND

2005 ND ND ND

2006 ND ND ND

2007 ND * ND

2008 ND ND ND

2009 ND ND ND

1998 was not included because there were no whelks collected from

January to May.

* Demographics that were significantly different at alpha ¼ 0.05; ND,

demographics that were not significantly different at alpha ¼ 0.05.
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collected. Age-frequency distributions for the combination of
Lafayette and Elizabeth River whelk collections each year

from 2002 through 2009 were also evaluated with two sample

Kolmogorov–Smirnov tests.

James River Oyster and Shell Substrates (Zones 1, 2, 3)

The increase in whelks observed on oyster substrates in the

lower James River after 2004 reflects known whelk range
expansions (Harding &Mann 2005) into the James River oyster

Figure 3. Shell length frequency distribution for live whelks collected at OV, HB, and JRship from January to May between 1999 and 2009. Vertical

arrows distinguish the minimum (11 mm) and maximum (195 mm) SL observed.
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habitats above Newport News Point (Tables 1 and 2, Fig. 1).
Based on oyster distribution (Mann et al. 2009a, 2009b) and

salinity (Haven & Fritz 1985), James River whelk collections
from oyster and shell substrate were categorized into zone 1
(between Wreck Shoal and Newport News Point/MMBT,

including the lower Nansemond River and the Warwick River),
zone 2 (between Point of Shoals and Wreck Shoal, including
Wreck Shoal), and zone 3 [above Point of Shoals to DeepWater
Shoal]. Only zone 1 had enough whelks (>5 whelks per year per
5-mm-SL bin) in consecutive years to apply Kolmogorov–
Smirnov tests to evaluate demographic changes over time related
to upriver range expansions. Two sample Kolmogorov–Smirnov

tests were used to describe potential changes in zone 1 length-
frequency distributions from 2004 to 2009.

The observed SL demographics for whelks collected in zone

1 on oysters from 2004 to 2009 were recast as annual age

demographics using Eq. 2 and the Von Bertalanffy parameters
described above. The resulting age demographics were then

compared using two-sample Kolmogorov–Smirnov tests.

Influence of Environmental Conditions

Average dailywater temperatures from theVIMSatGloucester

Point on the York River were used to calculate average

monthly and quarterly water temperatures. Mann et al. (2009a)

demonstrated that Wreck Shoal (James River, zone 1; Fig. 1)

water temperatures are similar to those recorded at Gloucester

Point. Average daily salinities at 3 m depth for Wreck Shoal were

estimated using USGS discharge data (http://waterdata.usgs.gov/

va/nwis/uv/?site_no¼02037500, station 02037500) perMann et al.

(2009a) and summarized at monthly and quarterly intervals.
Average daily water temperature data measured at Middle

Ground Light (MG on Fig. 1; Harding et al. 2013) were

compared with measured VIMS water temperatures from 729

dates in 2007 through 2009 when both monitoring stations were

active at both sites using a linear regression (y¼ 0.35 + 0.963 x;

R2 ¼ 0.995). A slope of 1 indicates that water temperatures are

the same at both sites. YorkRiver water temperatures were used

for monthly, quarterly, and decadal (1979 to 2009) residual

descriptions at Middle Ground because the resulting slope

(0.96) indicated that water temperatures at Middle Ground

are approximately equal to those observed at VIMS.
Average daily salinity at Middle Ground Light was com-

pared with average daily VIMS salinity with a linear regression

using average daily salinity measured for 526 dates in 2007 to

2009 when both monitoring stations were active. The resulting

regression (y¼ 0.09 + 1.00* x; R2¼ 0.85) accounted for 85% of

the variation observed in salinity between sites. Because the

slope of the line (1.00) indicated a 1:1 relationship between

salinity at these sites, VIMS salinity was used to describe

monthly, quarterly, and decadal residual values from the 20 y

(1989 to 2009) monthly and quarterly averages for OV, HB,

JRship, and the Elizabeth and Lafayette Rivers. These salinity

estimates were used in Pearson correlations evaluating salinity

influences on whelk collections that are described below.
A linear regression was applied to daily salinity estimates at

3 m for Wreck Shoal and average daily Middle Ground Light

salinity fromMarch 2007 through December 2009 (y ¼ 13.83 +

0.47 3 x; R2 ¼ 0.47). Wreck Shoal salinity estimates were used

TABLE 7.

Summary of Von Bertalanffy models used to estimate Chesapeake Bay Rapana venosa age-at-SL.

Metric Bhattacharya (1967) estimates only

Bhattacharya (1967) and growth

estimates for whelks >170 mm SL*

Minimum SL used for estimate 31 31

Maximum SL used for estimate 165 195

n data pairs 63 82

n whelks contributing 13,724 13,749

R2 0.98 0.99

Linf (standard error) 173.32 (4.65) 188.34 (1.76)

K value (standard error) 0.2013 (0.0154) 0.1608 (0.0057)

t0 value (error) –0.8477 (0.1370) –1.2031 (0.1103)

* Annual growth rates were estimated for SL bins 170–174.9 (3mm/y) and 175–179.5 mmaswell as 180–184.9, 185–189.9, and 190–194.9 mm (2mm/y

for each), and whelks were assigned to an age class based on reductions in annual shell growth each year after Age 12–13 indicated by the Von

Bertalanffy fit for only whelks less than 170 mm SL.

Figure 4. Chesapeake Bay rapa whelk age-at-length relationship with the

fitted Von Bertalanffy growth curve including regression and population

5 and 95% confidence intervals. Regression coefficients, error terms, and

coefficient of determination are provided in Table 7.
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only to describe salinity in zone 1, adjacent to Wreck Shoal,
rather than all sites within the James River because this

regression accounts for only 47% of the salinity variation
observed between Wreck Shoal and Middle Ground. Monthly
and quarterly average salinity estimates as well as deviations

from the 30 y (1979 to 2009) monthly and quarterly averages
were made.

Pearson correlations were made between average monthly

(January, February, March, April, and May), quarterly (January–
March and April–June) water temperature or salinity and the
number of whelks collected from January to May in the same
year within each geographic area (OV–HB–JRship, Elizabeth

and Lafayette Rivers, and James River zone 1). Pearson
correlations were also made between observed conditions in
December and the fourth quarter (October–December) imme-

diately preceding the January–May whelk collections for each
geographic region.

RESULTS

A total of 27,624 rapa whelks ranging in SL from 11 to
195 mm were collected in the Chesapeake Bay between June
1998 andNovember 2009 (Tables 1 and 2).Whelks were present

in every major western Chesapeake Bay region south of
Windmill Point by November 2009 (Table 1, Fig. 1). The
observed benthic whelk distribution generally follows the

distribution of the 15 isohalines at approximately10 m across
seasons (Stroup & Lynn 1963, Rennie & Neilson 1994, Mann &
Harding 2000, 2003). Rapa whelk range expansion from the

lower James River [adjacent to the coal terminals at Newport
News Point (Harding & Mann 1999, 2005, Mann & Harding
2000)] into oyster habitats between Newport News Point and

Mulberry Point (Fig. 1) including theNansemond andWarwick
Rivers was facilitated by local physical oceanography (local

gyres, two-layer partially mixed estuary) centered at Newport
News Point (Wood & Hargis 1971, Mann 1988, Mann &
Harding 2000).

Whelk presence in the Elizabeth and Lafayette Rivers and

oyster habitats between Newport News Point and Mulberry
Point (Fig. 1) including the Nansemond and Warwick Rivers
increased from 1999 to 2009 (Table 2). Between 2004 and 2009,

the James River rapa whelk range expanded to Deep Water
Shoal, the most up-estuary location for commercially fished
oyster bars (Tables 1 and 2, Fig. 1). Thus, by September 2009,

the James River rapa whelk range encompassed the entire
spatial footprint for extant commercial northern quahog and
oyster populations (Mann et al. 2005, Mann et al. 2009a).

The largest whelks (170–195 mm SL) were consistently

found near the Chesapeake Bay mouth and off OV in the
vicinity of the Chesapeake Bay Bridge Tunnel and islands
(Table 1, Fig. 1). This region includes the shipping deballasting

zones just up-estuary of CapeHenry and adjacent to the Thimble
Shoals Channel.

Of the whelks received through the bounty program, 85%

(23,375) were either alive or recently deceased (tissue still
present in the shell) when reported (Table 3). As described
above, demographic analyses focused on whelk collections

between January 1 andMay 31 (63.5% of all annual collections)
from the combined OV, HB, and JRship locations (Table 4) to
ensure valid comparisons across years and large sample sizes.

SL Demographic Trends

The observed whelk demographics for OV, HB, and JRship

showed consistent representation across the 81- to 161-mm SL
range and a general increase in whelks per length class with time
(Fig. 3). With the exception of 2007, observed whelk length

frequencies in these regions were similar within a year (Table 6).
During 2007, whelks less than 116 mm SL were not observed
among the 88 whelks (total) collected from JRship.

The incidence of whelks less than 81 mm SL was always

relatively low but did increase with time between 1999 and 2009
(Fig. 3). Small whelks typically were collected as epifauna on larger
whelks, notably the 11- and 41-mmSLwhelks in 2003, the 25-, 31-,

35- and 46-mm SL whelks in 2005 and the 36- and 46-mm SL
whelks in 2009 (Fig. 3).Whelks greater than 170mmSLwere rarely
reported (25/23,375 or 0.1%). Whelks greater than approximately

170 mm SL are too large to fit within the funnels of a standard
commercial crab pot. These large whelks were/are vulnerable to
collection only when a patent tong (for oyster or northern quahog

harvest) or dredge (for oyster, blue crab, channel whelk, or
knobbed whelk harvest) deployment was directly coincidental or
whenwhelks remained attached to a crab pot exterior when the pot
was pulled. The latter primarily applied to large females that were

cementing egg capsules to the crab pot mesh.
Whelk demographics observed across OV, HB, and JRship

changed significantly between 1999 and 2009 (Table 8). Whelk

demographics in 2000 were different from those in all other
years. This is probably due to both relatively low representation
across length classes but particularly limited representation of

whelks less than approximately 120 mm SL compared with
other years (Fig. 3). The 2008 demographics were significantly
different from all other years except 1999 (Table 8, Fig. 3) and

Figure 5. Box–Whisker plot presenting the observed rapa whelk SL

ranges in the Elizabeth (Eliz, grey) and Lafayette (Laf, white) Rivers

during 2005 and 2009 when whelks were collected in both rivers. n, the

number of whelks within a river and year. The single horizontal line within

each box indicates the median. The upper and lower box boundaries show

the 25
th
and 75

th
percentile. The ‘‘whiskers’’ or vertical lines show the data

range (maxima, minima).
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were characterized by a unimodal distribution or single peak
across the 121- to 145-mmlength classes rather than the broad,
relatively flat distribution observed from 2002 to 2006 for the

approximately 76- to 160-mmlength range (Fig. 3). Bimodal
length distributions were observed in 2001, 2004, and 2009 (Fig.
3).Within these years, only 2001was significantly different from

other years in multiple years (6 out of 8 y examined; Table 8).
The first distribution peak, centered at 91–95 mm SL, was
consistent across these years (Fig. 3). The second demographic

peak shifted with time from a center of approximately126–130
(2001) to 131–135 mm (2004), and then 136–141 mm SL (2009).

Wild Whelk Age-at-Length Relationship

The combined OV–HB–JRship SL demographic was used
for estimates of age-at-length per Bhattacharya (1967) for
cohorts between 71 and 171 mm SL. The fitted Von Bertalanffy

growth curve (n ¼ 82 data pairs based on 13,749 individual
whelkmeasurements) using cohorts and growth estimates based
on cohort growth predicted 99% of the SL variation with age
(Table 7, Fig. 4). The resulting regression and population 5 and

95% confidence intervals encompassed the range of data pairs
from cohort analyses (Fig. 4). The maximum predicted SL (Linf,
188 mm) includes all but 2 of the 23,375 live whelks collected

between 1999 and 2009. The lengths of these two very large
whelks fall within (190mmSL) or on (195mmSL) the boundaries
of the regression population 95% confidence limits (Fig. 4).

Whelks cultured at ambient conditions in the lower York
River (VIMS) between July 2005 and September 2007 reached
SL of 35.2–52.0 mm (n ¼ 32 whelks) by 0.86 y post-hatch (May
2006, Fig. 2). These 2005-hatched cultured whelks reached SL

of 59.3–96.7 mm (n ¼ 31 whelks) by May 28, 2007, 1.86 y post-
hatch (Fig. 2). These age–length data for whelks cultured
at ambient environmental conditions are in agreement with

the lengths predicted by the Von Bertalanffy model for 0.86
(53.2mm) and 1.86 y (73.3mm;Fig. 4). Cultured andwildwhelks
had similar SL at Age 1 (ANOVA, df ¼ 1, F ¼ 2.92, P ¼ 0.09)

and Age 2 (ANOVA, df ¼ 1, F ¼ 0.02, P ¼ 0.88).
The Von Bertalanffy age estimates were combined with

collection year for whelks larger than 169 mm SL to estimate

the year of first introduction to the Chesapeake Bay (Table 9).
These data identify 1981 as the earliest year that rapa whelk veligers

were introduced to the Bay with survival through metamorphosis
and recruitment. This estimate is 17 y before the first confirmed
reports of adultwhelks (June 1998;Harding&Mann 1999).Whelks
greater than 169 mm SL were typically collected from relatively

deep regions (Table 9, Fig. 1) where northern quahogs occur at
densities of more than 9–20/m2 (Mann et al. 2005).

TheChesapeake BayVonBertalanffy age-at-length relation-

ship was applied to individual whelk SL resulting in combined
OV–HB–JRship whelk age-frequency distributions from 1999
to 2009 (Fig. 6). Whelks younger than Age 2 and older than Age

10 were rarely collected (Fig. 6). Nine and 10 y-old whelks were
present in every year from 1999 to 2009. The relative abundance
of these older age classes remained static until 2009 when the
number of Age 9 whelks increased by approximately 50% from

2008 (52 versus 107 in 2009). This increase may be due to the
progression of the 1998 year class that was evident in 2001 (Age
3) reaching Age 9 (Fig. 5). Limited numbers of 11- to 15-y-old

whelks were consistently represented through the time series
(Fig. 6). Representation within individual age classes increased
during the time series, whereas the observed age class range

remained generally unchanged. In general, most (49/55 pairs) of
the annual age-frequency distributions were significantly dif-
ferent from each other (Table 10) indicating a dynamic pop-

ulation with both active recruitment to the younger age classes
and emigration from fished habitats, mortality, or both in age
classes older than approximately 10–11 y.

Rapa whelk age distributions from OV–HB–JRship in 1999,

2000, and 2008 had few whelks less than Age 5 represented. The
2001 age distributionwas strongly skewed towardAge 3 individuals
(1998 year class; 414 of 1334 whelks; 31%) and significantly

different from the age distribution in any other year (Table 10).
2001 was also notable because it was the first year in which age
classes fromAge 1–12 were represented simultaneously with six age

classes containingmore than 100whelks each.Five to six age classes
between Age 2–3 and 7–8 were always represented by 100 whelks
annually between 2001 and 2008. By 2009, five age classes had at
least 200 whelks. Although the 2009 age distribution was also

dominatedbyAge 3 individuals (446of 1,927; 23%),Age 6 andAge
7 were also well represented (249 whelks in these age classes; 13%).

Whelk recruitment was strong in 1998 and 2001, and the

resulting cohorts were still evident in the population demo-
graphic 7–8 y post-recruitment (Figs. 3 and 6); 1990 appears to
also have been a good year for recruitment as that cohort was

still disproportionately represented in the 2000 demographic
(Figs. 3 and 6). The 1990 year class produced 3 of the 25 oldest
whelks observed between 1999 and 2009 (Table 9). The 1989

year class also resulted in three of the 25 oldest whelks, whereas
the 1986 year class contributed four of the largest whelks (Table
9). The 2009 age demographic for the combined OV–HB–
JRship region suggests that the 2006 year class was also a strong

year class but it remains to be seen how long or if this
recruitment signal will persist in the population.

Spatial Invasion Trends

James River: Newport News Point to SR-258 Bridge (JRship)

The James River reach between the SR-258 bridge and New-
port News Point (and the MMBT, JRship; Fig. 1) is a transition
zone between the upper and lower estuaries. Remnants of the

TABLE 8.

Summary of two sample Kolmogorov–Smirnov tests on SL
frequency distributions for rapa whelks collected between

January 1 and May 31 from the combined OV, HB, JRship

regions during 1999 to 2009.

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

1999 ND * ND ND * * * * ND *

2000 * * * * * * * * *

2001 * * ND * * * * ND

2002 ND ND ND ND ND * ND

2003 ND ND ND ND * ND

2004 ND ND ND * ND

2005 ND ND * ND

2006 ND * *

2007 * *

2008 *

No whelks were collected from January to May 1998.

* Demographics that were significantly different at alpha ¼ 0.05; ND,

demographics that were not significantly different at alpha ¼ 0.05.
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historic oyster reef system (Haven et al. 1978, Hargis 1999,
Woods et al. 2005) persist in the relatively shallow regions just
south and west of the deep main channel that parallels the

heavily developed eastern shoreline (Mann et al. 2009b). The
public oyster grounds (NansemondRidge, Cruisers Shoal, High
Shoal, and Dog Shoal) are relatively shallow (<6 m) and receive

oyster recruitment annually (Fig. 1; Haven & Fritz 1985, Mann
1988, Southworth et al. 2009, 2010, 2011). These oyster beds are
also adjacent to privately leased bottom in the nearshore
subtidal waters along the southern shoreline that extend into

the Nansemond River mouth, which annually supports addi-
tional oysters.

Although live oyster and oyster shell substrate are largely

absent in the modern Hampton Roads region, these substrate
types are still present above the SR-258 bridge (Fig. 1). Whelks
from oyster substrates below the SR-258 bridge were considered

with zone 1. Whelks from non-shell substrate within this reach
were considered with the OV–HB–JRsh region. Although
reported collection depths for both habitat types span the range
from 1.5 to 19.8 m, the mean depth for whelk collections

associated with shell substrate was 8.1 m, whereas the mean
depth for non-shell whelk collections was 10.1 m. The standard
deviation for both habitat collection depths was 5.48 m.

Although the whelk SL range observed from non-shell
substrate (50–168 mm SL) overlapped the whelk length range
from oyster habitats (47–171 mm SL), rapa whelks collected

from oysters or oyster shell substrate were significantly larger
than whelks collected from non-shell habitats (Kruskal–Wallis,
H ¼ 61.89, P < 0.01) with a 16 mm difference in mean SL

between habitat types. The observed length difference with
habitat type may relate to predation vulnerability as well as
foraging strategies. Whelks on oyster substrates are epifaunal,

at least when feeding. Whelks on non-shell substrates are
typically infaunal and burrowing affords them a potential
predation refuge. It should be noted that rapa whelks follow

a diel activity pattern whereby they are more active at night
(Harding, unpublished data). It is likely that infaunal whelks,
particularly those that have not reached a size refuge from
predation, move into different habitats at night and then resume

infaunal residency by day. Bombace et al. (1994) described
nocturnal migration onto artificial reefs byMediterranean rapa
whelks from adjacent infaunal habitats. Rapa whelks larger

than 30–40 mm SL transition from drilling their bivalve prey
to other predation strategies (Harding et al. 2007b). At larger
lengths, rapa whelks and other large whelks open infaunal or

epifaunal bivalves through a combination of mechanical and
chemical methods that rely on the whelk foot being suitably
sized to grasp the prey item (Carriker 1951,Wells 1958, Ansell &
Morton 1987). Larger whelks are more capable of opening

larger oysters than smaller whelks.

Elizabeth and Lafayette Rivers

The whelks collected in the Elizabeth and Lafayette Rivers
from 2000 through 2009 ranged from 41 (Age 0) to 159 mm SL
(Age 10; Figs. 7 and 8). Whelk abundance was lower in these

tributaries than in the OV–HB–JRship region in all years (Table
2). No whelks were reported from either river in 1999 or 2001,
whereas only two whelks were reported between January and

TABLE 9.

Estimated natal year and year of first introduction to Chesapeake Bay via veligers for rapa whelks less than 170-mm SL.

Collection year SL (mm) at collection Estimated age at collection (y) Estimated natal year Collection location

2007 195 25.79 1981 OV

2002 183 19.79 1982 HB

2008 190 23.79 1984 OV

2000 173 14.79 1985 HB

2001 175 15.79 1985 HB

2000 170 13.79 1986 OV

2002 174 15.79 1986 OV

2002 175 15.79 1986 OV

2007 185 20.79 1986 Bay mouth near CBBT

2001 171 13.79 1987 HB

2001 171 13.79 1987 HB

2002 173 14.79 1987 HB

2002 170 13.79 1988 OV

2002 171 13.79 1988 HB

2003 171 13.79 1989 HB

2003 171 13.79 1989 Buckroe Beach

2005 174 15.79 1989 OV

2004 170 13.79 1990 OV

2006 174 15.79 1990 Bay mouth near CBBT

2007 177 16.79 1990 Bay mouth near CBBT

2005 170 13.79 1991 HB

2007 172 14.79 1992 Bay mouth near CBBT

2008 173 14.79 1993 JRship

2009 171 13.79 1995 JRship

2009 171 13.79 1995 HB

Natal year estimates are based on collection information for large whelks combined with the Chesapeake Bay Rapana venosa age-at-length

relationship (Table 7, Fig. 4).
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May 2000. The apparent ‘‘alternation’’ of whelk collections in

these rivers in 2003, 2004, and 2006 through 2008 as well as the
demographic gaps between Age 2–3 and Age 7–8 in 2006, 2007,
2008 probably have more to do with the opportunistic nature of

the bounty program combined with commercial fisherman

behavior than whelk biology. Ninety-two percent of whelk
donations from these rivers (n ¼ 696) across all years and
months came from the blue crab pot fishery. The timing of blue

Figure 6. Age-frequency distribution for live rapa whelks collected at OV, HB, and JRship between 1999 and 2009 from January to May. Vertical

arrows distinguish the two oldest whelks (24 and 26 y, both in 2007).
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crab migration from Hampton Roads into and out of the
Elizabeth and Lafayette Rivers depends on the speed at which

the water warms in the spring and cools in the fall, respectively.
A fisherman�s decision on where to set pots relates to the level
of success at the current pot deployment location(s) as well as

landing and vessel logistics. Biological and logistical factors
determine when (or if ) crab pots will be placed in these rivers
and these factors vary within a year as well as across years. It

is likely that some rapa whelks used these rivers in each year
between 2002 and 2009 and simply did not overlap with gear
that was fishing between January 1 and May 31.

There were no differences in rapa whelk SL or age de-

mographics in the Lafayette and Elizabeth Rivers between 2003
and 2009 (Table 11, Fig. 5). Most whelks in these tributaries
were 3–8 y old (Fig. 8). Two and 3 y old whelks were not

observed in the Lafayette and Elizabeth Rivers during 2002
even though these age classes were relatively abundant in the
OV–HB–JRship region during 2002 (Fig. 6). Age 9–10 whelks

were observed in 2005 and then from 2007 through 2009. The
gradual increase in observed Age 9–10 whelks matches the
increase in relative abundance of these age classes observed in
the OV–HB–JRship region that probably serves as a source for

the Elizabeth and Lafayette River whelks. In 2009, the strength
of the 2006 year class, indicated by higher relative abundance of
Age 3 whelks, also observed in the OV–HB–JRship region was

evident in the Elizabeth and Lafayette River demographics
(Figs. 6 and 8).

James River Oyster and Shell Substrates (Zones 1, 2, 3)

Rapa whelks were absent from zones 1 through 3 from 1998

through 2000with the exception of a single whelk collected from
the Nansemond River in 1998 (Table 2). From 2001 to 2003, 73
of the 87 whelks collected across years were from the lower

Nansemond River, whose location adjacent to HB and the
deeper non-oyster reef habitats of the JRship region as well as
resident oyster populations made it a logical dispersal region for

whelks from these areas (Table 2). This trend continued in 2004
when more whelks (total n¼ 431) were collected from the lower
Nansemond River than from the JRship region (total n ¼ 402;

Table 2). Although whelks were collected from three other zone
1 locations during 2004, none of these collections includedmore

than 11 whelks (Table 2). The collection of 44 whelks from
James River zone 1 sites above the SR-258 bridge between
December 2004 and February 2005 prompted Harding and
Mann�s (2005) description of this range expansion. The number

of zone 1 collections continued to increase through spring and
summer 2005, particularly when fishermen used small dredges
on private leased oyster grounds within the region, ultimately

yielding a total of 2,035 whelks for the year (Table 2). Zone 1
whelk catch declined during 2006, relative to 2005, although
both Thomas Rock and the Nansemond River still produced

hundreds of whelks (Table 2). Relative abundance remained
low in 2007 and 2008 but zone 1 whelk catch increased in 2009,
with most of the 745 whelks being collected from oyster habitats
in the Nansemond River and Thomas Rock (Table 2).

Whelk occupancy of zone 2 was first reported on the north
side of the shipping channel in 2005 (Wreck Shoal; Fig. 1).
Whelks were not observed in zone 2 again until 2009 when they

were found on the south side of the shipping channel at Day�s
Point (DP; Table 2, Fig. 1). Whelks were only collected from
zone 3 in 2006 (n ¼ 3; Point of Shoals, PS; Table 2, Fig. 1) and

2009 (n ¼ 11; Deep Water Shoal, DWS; Table 2, Fig. 1).
Zone 1 collections from January through May included

whelks ranging from 46 to 175 mm SL with most SL and age

classes represented in 2002 as well as from 2004 through 2006
and again in 2009 (Figs. 9 and 10). Rapa whelks were
completely absent from zone 1 from 1998 to 2000 and only
collected from June through September in 2001 (Table 2).

Whelks from Age 1 (2004) to 14 (2009) were observed including
representatives from Age 9 and older in every year when whelks
were observed. The James River zone 1 demographics changed

significantly between years until 2007 to 2009 (Table 12).
Although no whelks were collected from zone 1 from January
to May 2003, the numbers of whelks, particularly in the Age 2

and Age 3 classes, were relatively high in 2004 compared with
previous years (Fig. 10). This trend for strong recruitment
increased in 2005 but recruitment declined from 2006 through
2008. Relative abundance also declined in each year after 2005

with the lowest whelk numbers since 2001 (n ¼ 6) observed in
2007 (n ¼ 32). Whelk numbers were relatively low in 2009 (n ¼
39) but Age 2 and Age 3 whelks were observed in 2009 after

a 2 y absence as part of a demographic in which most size or age
classes were represented (Figs. 9 and 10).

Influence of Environmental Conditions on Whelk Recruitment

Average monthly water temperature ranged from 2.45�C
(January 2005) to 29.15�C (August 2005), as is typical for these
regions of the lower Chesapeake Bay (Mann et al. 2009a). Seven
out of 11 y during the time series experienced January–March
temperatures that were above the 1979 to 2009 average (Table

13, Fig. 11). Inmost cases, temperatures during April,May, and
June were also above average relative to the 30 y average except
for 2003 and 2005, which were below average. The number of

whelks observed from January to May from 1999 to 2009 was
not correlated with monthly or quarterly water temperatures
during the same year of collection, or water temperatures

experienced in December or October–December of the previous
year (Tables 14 and 15) with one exception. There was a significant
correlation between second Quarter (January–March) water

TABLE 10.

Summary of two sample Kolmogorov–Smirnov tests on age-
frequency distributions for whelks collected between January 1

and May 31 from the combined OV, HB, and JRship regions

from 1999 to 2009.

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

1999 * * * * * * * * ND *

2000 * * * * * * * * *

2001 * * * * * * * *

2002 ND * * * ND * *

2003 * * * ND * *

2004 * * * * ND

2005 * * * ND

2006 * * *

2007 * *

2008 *

No whelks were collected from January to May 1998.

* Demographics that were significantly different at alpha ¼ 0.05; ND,

demographics that were not significantly different at alpha ¼ 0.05.

HARDING AND MANN898



temperatures and the number of whelks observed in the
Elizabeth and Lafayette Rivers (Table 15) with fewer whelks

observed during colder years.
The observed annual and decadal Chesapeake Bay temper-

ature ranges were within the reported thermal range for rapa
whelk native habitats (Tsi et al. 1983, Chung & Kim 1997,

Chung et al. 1993) as well as other estuaries where rapa whelks
have successfully invaded (Black Sea: Mann & Harding 2000;
Rio de la Plata: Giberto et al. 2006). Benthic whelks are mobile

and will remain within appropriate temperature boundaries,
much like mid-Atlantic Bight shelf molluscan distributions are
set seasonally by the isotherm distributions (Franz & Merrill

1980). If shallow habitats get too warm or cold, whelks will
leave them seasonally to occupy deeper more stable habitats. As
mentioned above, the seasonal trends observed in the Elizabeth

and Lafayette Rivers likely result from thermally modulated
seasonal migrations.

Although temperature sets the upper and lower boundaries
for survival, it also dictates thresholds for fundamental bi-
ological processes directly related to establishment of an in-
troduced species in the receptor habitat. Water temperatures of

10–12�C mark the seasonal onset of feeding in rapa whelks
(Harding, unpublished data) as with the native oyster drills
(Federighi 1931, Andrews 1956). Rapa whelk egg capsule

deposition begins at 18�C (Chung et al. 2002, Harding et al.
2007a, 2008) and ceases after temperatures exceed 28�C
(Harding et al. 2007a, 2008). The temperature parameters

associated with reproduction describe spawning season duration,
which may be a key factor in the resulting year class strength and
observed interannual variation in year class persistence observed

Figure 7. Shell length demographics for the combined Elizabeth and Lafayette Rivers from 2002 to 2009 presented by 5-mm SL class. The smallest

SL within a size class is used to refer to that group. Whelk collections from these tributaries in 1998 to 2001 were not numerous enough to consider

for demographic analyses.
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in whelk demographics because of the obvious implications for

increased propagule pressure. For example, the 2001 year class
presents a strong age demographic signal for all three regions
examined. The spawning season duration can be calculated by

the difference between the week of the year when water temper-

atures reach 18�C and when they exceed 27–28�C. The 2001 egg-
laying season lasted for at least 13 wk as compared with the 8–11
wk spawning seasons predicted by water temperatures in 7 of the

Figure 8. Age-frequency distribution for Elizabeth and Lafayette River rapa whelks from 2002 through 2009.
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11 y from 1998 through 2008 (Table 16). The predicted spawning
season was also longer in 2000, 2003, and 2009 (13, 14, and 13 wk,

respectively). The 2000 year class signal was likely confounded by
a cooler than average fall (Fig. 11) following a very wet summer
(see below, Figs. 12 and 13). The 2003 year class encountered

a relatively cooler (Fig. 11) andmuch wetter than average summer
and fall (see below, Figs. 12 and 13) including rains from

Hurricane Isabel in September 2003 which may have locally
reduced salinity below survival thresholds for as long as several
days. No information is available on the success or failure of the
2009 year class.

Salinity followed a general seasonal trend with lower values
observed from February through July or August followed by
increasing salinity from August through January (Table 13,

Figs. 12 and 13). This pattern is commensurate with spring and
early summer rainfall followed by seasonally high evaporation
and low precipitation associated with late summer, fall, and

winter. The number of whelks observed from January to May
from 1999 through 2009 was not correlated with monthly or
quarterly salinity during the same year of collection, or salinity
inDecember or October–December of the previous year (Tables

14 and 15).
While the (seasonal) wet/dry pattern influences habitats at

OV and throughout the James River rapa whelk range, average

monthly salinity below the James River SR–258 bridge typically
does not fall below 15, although 2003 was an exceptionally wet
year with monthly salinity of 12–14 observed (Fig. 12). Annual

Figure 9. Rapa whelk SL (mm) frequency distribution for James River zone 1 from 2002 to 2009 by 5-mm length class. The smallest SL within a length

class is used to refer to that group. No whelks were collected from January through May in 1999, 2000, 2001, or 2003 from zone 1.

TABLE 11.

Summary of two sample Kolmogorov–Smirnov tests on the SL
and age frequency distributions for whelks collected between

January 1 and May 31 from the combined Elizabeth and

Lafayette Rivers during 2003, 2005, 2007, and 2009.

SL 2005 2007 2009

2003 ND ND ND

2005 ND ND

2007 ND

Age 2005 2007 2009

2003 ND ND ND

2005 ND ND

2007 ND

ND, demographics that were not significantly different at alpha ¼ 0.05.
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salinity in these habitats is usually between 17 and 21 as
demonstrated by 2002. The tidal nature and spatial extent of
these regions guarantees that the ambient environmental
conditions are dynamic and likely to return to a range within

physiological tolerances at tidal scales (approximately 6 h).
Estuarine volume and tidal exchangemodulate rapid excursions
from typical environmental conditions during extreme events

at basin (e.g., Tropical Storm Agnes) or smaller (e.g., local
summer thunderstorms) spatial scales at time scales that
typically allow rapa whelks to leave marginal habitats and

enter habitats with suitable environmental conditions.
Wreck Shoal salinity ranged from 8 to 20 (Table 13, Fig. 13)

during 2002 in contrast to locations below the James River
SR–258 bridge and in the mainstem Bay. During years with

abnormally high precipitation, such as 2003, Wreck Shoal
salinity may be as low as 5–6 for spring months with fall salinity
in the 8–10 range, which is as much as 5–6 salinity units below

the 30 y average (Fig. 13). Low salinity events at Wreck Shoal
are typical of zones 2 and 3 as well as the upper portion of zone 1,
effectively forcing adult rapa whelks out of these areas during wet

years when salinity is below 12–15 for most, if not all, of the year.
Wreck Shoal salinity offers insight into observed demo-

graphic trends for zone 1 whelks. No whelks were collected

from zone 1 between January andMay 2003 (Figs. 9 and 10). In
2003, salinity from January through May ranged from 5 to 10
with a salinity of approximately 6 observed in March, April,
andMay (Table 13, Fig. 13). Whelks could have taken refuge in

the adjacent channel habitats and/or migrated a short distance
downstream when salinity was below 12–15. Rapa whelks
usually begin to actively forage and seek both mates and egg

capsule deposition sites during these spring months. In contrast,
Wreck Shoal salinity was greater than 10 from May 2000
through March 2001 and from May 2001 through October

2002 (Table 13, Fig. 13). Salinity during most of 2001 and all of
2002 was above the decadal averages (Table 13, Fig. 13). The
elevated Wreck Shoal salinity associated with the dry years of
2001 and 2002 likely facilitated whelk range expansion into zone 1.

DISCUSSION

The Chesapeake Bay Rapana venosa invasion began as early
as 1981. At a watershed level, the Chesapeake Bay habitats
occupied by rapa whelks in 2009 remain south of Smith Point at

the Potomac River mouth and essentially unchanged from 2005
through 2009. Deballasting stations in the lower Bay are almost
certainly the sites of first introduction. The related rapa whelk

Figure 10. Age-frequency distribution for James River zone 1 rapa whelks from 2000 through 2009. No whelks were collected during 2003.
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veligers probably came from the Black Sea via coal carrier
ballast water (Mann & Harding 2000, Chandler et al. 2008) or
they may have been produced within the Chesapeake Bay by

adult broodstock that had been introduced as larvae even
earlier; potentially as early as 1981. Rapa whelk life expectancy
has been estimated at 15–18 y (Harding &Mann 2005, Harding

et al. 2008), but the maximum longevity estimates supported by
these analyses are 24–26 y.

Within the OV–HB–JRship regions, the site of introduction,
establishment and source region for lower Bay, the whelk SL

and age-frequency distributions from 1999 to 2009 describe
a broad demographic with ongoing recruitment confirming

establishment and sufficient propagule pressure tomaintain and
then ‘‘fill in’’ the existing demographic. Although seasonal

range extension into the Elizabeth and Lafayette Rivers was
consistently observed beginning in 2000 with increasing in-
tensity (indicated by numbers of whelks collected) throughout
the time series, both of these tributaries are relatively shallow

and it is likely that colder winter temperatures dictate seasonal
evacuation of these areas with reinvasion each spring. The
annual ambient water temperature and salinity conditions

within the OV, HB, and mesohaline (10–23) James River
habitats appear to be within the range of the physiological
tolerances for benthic rapa whelks (juvenile and adult). Whelk

occupancy of OV, HB, and lower James River habitats will not
be restricted solely on the basis of either water temperature or
salinity.

Local circulation patterns carry planktonic larval whelks

and set the initial footprint of ‘‘inoculation’’ in combination
with propagule pressure (larval supply) but the observed spatial
distribution of recruits and older whelks results from postset-

tlement processes including whelk behavior. Rapa whelks
require hard substrate for successful metamorphosis (Harding
2006) and live epifaunally for at least several months postsettle-

ment (Harding, unpublished data). At SL less than approxi-
mately 25 mm, rapa whelks are still capable of dispersal via
water currents to new hard substrate habitats because they can

inflate their feet and float (Harding 2011). During this epifaunal
period, juvenile whelks co-occur with a broad suite of native
predators associated with Chesapeake Bay mesohaline hard
substrates that are likely capable of eating recently settled rapa

whelks including errant polychaetes [e.g., Neanthes (¼Nereis)
succinea (Frey & Leuckart, 1847)]; mud crabs [e.g., Panopeus
herbstii (H. Milne Edwards, 1834), Eurypanopeus depressus

(Smith, 1869)]; blue crabs, and demersal fishes [e.g., Opsanus
tau (Linnaeus, 1766)]. Whelks are still vulnerable to predation
at least by small blue crabs until they attain SL of approxi-

mately 30–40 mm (Harding 2003).
Within the mesohaline James River estuary, rapa whelk

range expansions observed between 2004 and 2009 likely reflect
year-round occupancy promoted by bathymetry, physical

oceanography, and the availability of food resources. The
JRship region marks a transition zone for ecology as well as
habitat parameters. The deep (6–10 m) depositional channel

that promotes tidal incursion of marine water likely acts as a
salinity and temperature refuge as well as a conduit for whelks
to up-estuary locations (Wood & Hargis 1971, Ruzecki &

Hargis 1989). Infaunal benthic channel habitats remain rela-
tively cool and salty year-round as the water column stratifies
seasonally (Pritchard 1952, Ruzecki & Hargis 1989) unlike the

shallow (typically 1–3 m) well-mixed habitats that extend to the
banks on either side of the dredged channel. Thus, the James
River shipping channel is an important geomorphological
feature that facilitates range expansion upriver because it is

a reservoir of relatively salty water. Rapa whelk use of shallow
habitats from Wreck Shoal upriver through Deep Water Shoal
appears to be dictated by seasonal freshwater discharge patterns

and the resulting salinity. Adult whelks likely follow the isoha-
lines and avoid salinity less than 10–12 much like the native
muricid oyster drills (Zachary & Haven 1973).

The shallow shoulders on either side of the James River
shipping channel include habitats with living oysters and
associated oyster shell substrate (Haven et al. 1978, Mann

TABLE 13.

Decadal average WT and S values with standard error (SE).

1979–2009 average 1989–2009 average

Month VIMS WT (SE) WS S (SE) VIMS/MG S (SE)

January 5.32 (0.08) 9.70 (0.10) 19.94 (0.09)

February 5.29 (0.07) 9.12 (0.10) 18.89 (0.10)

March 8.39 (0.07) 8.16 (0.09) 17.72 (0.11)

April 13.65 (0.08) 8.40 (0.08) 16.59 (0.10)

May 19.11 (0.07) 9.32 (0.08) 17.06 (0.09)

June 24.08 (0.06) 11.60 (0.11) 17.86 (0.09)

July 26.87 (0.04) 13.81 (0.10) 19.25 (0.07)

August 27.26 (0.04) 14.95 (0.11) 19.70 (0.10)

September 24.61 (0.06) 14.63 (0.13) 19.41 (0.16)

October 19.41 (0.09) 14.21 (0.13) 20.46 (0.10)

November 13.58 (0.08) 12.11 (0.13) 21.04 (0.08)

December 8.41 (0.09) 10.37 (0.11) 20.49 (0.08)

WT, water temperature; S, salinity; MG, Middle Ground; WS, Wreck

Shoal. Water temperatures at VIMS, Gloucester Point, York River are

equivalent to water temperatures at WS (James River zone 1) and the

lower James River (JRship, Elizabeth, Lafayette). Salinity at Gloucester

Point is similar to salinity at MG in the lower James River as discussed

in text. Wreck Shoal salinity was estimated from discharge data as

discussed in text.

TABLE 12.

Summary of two sample Kolmogorov–Smirnov tests on the
rapa whelk SL and age frequency distributions for whelks

collected between January 1 and May 31 from James River

zone 1 from 2004 to 2009.

SL 2005 2006 2007 2008 2009

2004 * * ND * ND

2005 * ND * ND

2006 ND * ND

2007 ND ND

2008 ND

Age 2005 2006 2007 2008 2009

2004 * * * * *

2005 * * * *

2006 * * *

2007 ND ND

2008 ND

No whelks were collected from January to May 1998.

* Demographics that were significantly different at alpha ¼ 0.05; ND,

demographics that were not significantly different at alpha ¼ 0.05.
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et al. 2009a, 2009b; Fig. 1) that are the remnants of the massive
oyster reef system that developed during the Holocene epoch as

the modern Chesapeake Bay formed (Hargis 1999). Although
the spatial distribution of modern oyster populations is reduced
comparedwith their historic footprint (Winslow 1882), mesoha-

line James River oyster habitats remain from Newport News
Point to Mulberry Point (Haven et al. 1978, Mann et al. 2009b;
Fig. 1). By 2009, the observed rapa whelk spatial distribution in
this area seasonally overlapped with the distribution of extant

commercially fished oyster populations. Salinity less than 10–15
during seasonal (late winter-spring) wet periods will force whelk
egress from the shallow areas to the channel, potentially even

forcing whelks downstream in the channel (depending on the
volume of freshwater discharge relative to tidal influx) and
release oysters from whelk predation pressure. Oysters survive

exposure to salinities as low as 5–7 (Shumway 1996). Salinity
ranging from approximately 7 to 12 would promote oyster
survival but potentially exclude rapa whelks from the same area.

Miller et al. (2007) describe salinity tolerance as one of the
primary factors in the success or failure of molluscan invasion
success in estuaries. The distribution of the isohalines and

faunal salinity tolerances dictate the occupied range, that is,
the fundamental niche. Selection over geological time in geo-

graphically isolated locations creates species with unique fun-
damental and realized niche boundaries. When anthropogenic
actions transport species to novel locations with differing or

even absent biological and/or physical boundaries of these evolved
niche specifications, then the invader will, over time, stabilize in
an occupied or underused niche. Successful invaders are able to
occupy the edges or boundaries between niches occupied by

natives and thus establish a foothold in the receptor habitat.
Ecosystem disruptions that alter historic patterns of re-

source use provide niche opportunities and potential advan-

tages to invaders, particularly if the invaders use resources
differently than natives (Sherr & Hyatt 1999, Davis et al. 2000,
Shea & Chesson 2002). Prior to 1972, modern Chesapeake

predatory gastropods occupied two distinct salinity zones.
Native oyster drills (Urosalpinx cinerea and Eupleura caudata),
potential competitors with recently settled rapa whelks, oc-

curred at a minimum salinity of 9–12 (Federighi 1931, Carriker
1955, Manzi 1970, Zachary &Haven 1973) with preferred salinity
greater than 15 (Federighi 1931, Stauber 1943, Menzel & Nichey

Figure 11. Monthly water temperatures from 1999 to 2009 presented as residuals relative to the 1979 to 2009 decadal average monthly water

temperatures. Grey boxes distinguish even from odd years. Data from October 2003 through February 2004 are not available.

TABLE 14.

Summary of Pearson correlations between monthly WT or S and the total number of whelks collected from January to May within

a year from OV-HB-JRship, the Elizabeth and Lafayette Rivers, and James River zone 1.

OV-HB-JRship Elizabeth/Lafayette Rivers Zone 1

VIMS WT VIMS S VIMS WT VIMS S VIMS WT WS S

Month R P R P R P R P R P R P

December* –0.28 0.60 0.20 0.64 –0.22 0.78 0.12 0.88 –0.04 0.39 –0.54 0.14

January –0.33 0.42 0.24 0.50 –0.43 0.33 0.43 0.33 –0.14 0.73 –0.53 0.12

February –0.01 0.97 0.23 0.51 –0.55 0.16 0.24 0.57 0.20 0.59 –0.44 0.20

March –0.29 0.38 0.31 0.35 –0.67 0.07 –0.09 0.84 –0.20 0.59 0.09 0.81

April –0.05 0.88 0.44 0.18 –0.53 0.18 –0.08 0.85 0.09 0.80 0.11 0.76

May 0.22 0.52 0.12 0.73 –0.22 0.59 –0.02 0.96 –0.24 0.50 0.19 0.61

WT, water temperature; S, salinity; WS, Wreck Shoal; R, Pearson correlation test statistic; P, significance value.

* Previous calendar year.
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1958). Channel and knobbed whelks, native predatory gastro-

pods that are potential competitors with adult rapa whelks,
were (and are) restricted by their salinity tolerances to down-
estuary habitats with salinity greater than 18–20 (Castagna &

Kraeuter 1994), and typically are found at salinity greater than
25–28 (Maghales 1948, Castagna & Kraeuter 1994, Power
et al. 2002, Walker et al. 2008).

Tropical Storm Agnes (June 1972) reset the distribution and

abundance of native oyster drills in the lower Chesapeake Bay

(Andrews 1973,Mann&Harding 2003, Harding&Harasewych

2007), creating a niche opportunity. Excessive freshwater inflow
depressed salinity, whereas the accompanying sediment killed
epifaunal bivalve prey (particularly oysters) for several weeks

after the storm (Andrews 1973). In the wake of Tropical Storm
Agnes, viable oyster drill populations were restricted to main-
stem Chesapeake Bay locations near the Bay mouth (Andrews
1973). Surviving native drill populations have been reinvading

their original range, but the pace and success of this process are

TABLE 16.

Chesapeake Bay rapa whelk spawning season duration (wk) in relation to water temperatures for 1981 to 2009.

Year Date WT >18�C Date WT >28�C WOY WT >18�C WOY WT >28�C
Estimated spawning

season duration (wk)

1981 May 14, 1981 August 10, 1981 20 33 13

1982 May 7, 1982 July 28, 1982 19 31 12

1983 May 6, 1983 August 11, 1983 19 33 14

1984 May 6, 1984 August 14, 1984 19 33 14

1985 April 23, 1985 August 10, 1985 17 32 15

1986 May 9, 1986 July 16, 1986 19 29 10

1987 May 17, 1987 July 22, 1987 21 30 9

1988 May 16, 1988 August 2, 1988 21 32 11

1989 May 14, 1989 August 10, 1989 20 32 12

1990 April 28, 1990 July 22, 1990 17 30 13

1991 May 4, 1991 July 8, 1991 18 28 10

1992 May 15, 1992 August 10, 1992 20 33 13

1993 May 7, 1993 July 6, 1993 19 28 9

1994 April 29, 1994 July 5, 1994 18 28 10

1995 May 12, 1995 July 16, 1995 19 29 10

1996 May 5, 1996 August 10, 1996 19 32 13

1997 May 20, 1997 August 15, 1997 21 33 12

1998 May 5, 1998 July 21, 1998 19 30 11

1999 May 9, 1999 July 22, 1999 20 30 10

2000 May 7, 2000 August 9, 2000 20 33 13

2001 May 2, 2001 August 9, 2001 19 32 13

2002 April 18, 2002 July 17, 2002 18 29 11

2003 May 2, 2003 August 22, 2003 20 34 14

2004 April 25, 2004 July 20, 2004 20 30 10

2005 May 12, 2005 July 13, 2005 21 29 8

2006 April 25, 2006 July 18, 2006 19 29 10

2007 May 1, 2007 August 1, 2007 20 31 11

2008 April 28, 2008 July 19, 2008 19 29 10

2009 April 29, 2009 August 4, 2009 19 32 13

Average 11.5

WOY, week of the year; WT, average daily water temperature (�C).

TABLE 15.

Summary of Pearson correlations between quarterly WT or S and the number of whelks collected from January to May within
a year from OV–HB–JRship, the Elizabeth and Lafayette Rivers, and James River zone 1.

OV–HB–JRship Elizabeth/Lafayette Rivers Zone 1

VIMS WT VIMS S VIMS WT VIMS S VIMS WT WS S

Quarter R P R P R P R P R P R P

October–December† 0.09 0.80 0.46 0.25 –0.48 0.28 0.03 0.96 0.62 0.07 –0.42 0.26

January–March –0.14 0.68 0.27 0.42 –0.77 0.03* 0.04 0.92 0.23 0.52 –0.36 0.31

April–June 0.07 0.83 0.23 0.49 –0.67 0.07 –0.18 0.67 –0.18 0.61 0.21 0.56

WT, water temperature; S, salinity; WS, Wreck Shoal in the James River; R, Pearson correlation test statistic; P, significance value.

* Statistical significance at alpha ¼ 0.05.

† Previous calendar year.
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limited by the absence of a planktonic larval dispersal stage and
the increased patchiness and habitat fragmentation associated
with declines in the coverage of oysters and oyster shell related

both to disturbance from Agnes, increased sedimentation
(dredging, shoreline development), and changes in oyster
populations since 1972 related to disease (Andrews 1996,

Burreson & Ragone Calvo 1996, Carnegie & Burreson 2011),
recruitment (Southworth & Mann 2004, Mann et al. 2009a,
Harding et al. 2010), and shell dynamics (Haven et al. 1978,

Mann & Powell 2007, Harding et al. 2010).
Adult and juvenile rapa whelks have salinity tolerances

similar to those of Urosalpinx cinerea and Eupleura caudata
and have occupied the former drill habitats delineated by

a lower ambient salinity threshold of 10–12 extending to fully
marine waters (Golikov 1967, Tsi et al. 1983, Rubinshtein &
Hiznjak 1988, Mann &Harding 2000). Adult rapa whelk use of

infaunal habitats with salinity approximately 15–25 allows
them to avoid direct competition with native channel and
knobbed whelks for food. The rapa whelk�s ability to thrive in

mesohaline conditions has also facilitated its establishment in
the Rio de la Plata where it also occupies a unique set of depth,
temperature, and salinity conditions in nearshore coastal

habitats relative to the suite of native macrobenthic gastropods
(Carranza et al. 2008).

Rapa whelk life history includes traits that enhance estab-

lishment and range expansion within receptor habitats. Mixed
development (egg capsules and pelagic larvae) allows tidal
transport of planktonic larval forms into up-estuary habitats
and across gaps in fragmented benthic habitats within a single

generation versus the multiple generations required by native
gastropods to crawl up-estuary. Predation by crabs and other
benthic predators may select for fast-growing whelks that attain

Figure 13. MonthlyWreck Shoal (zone 1, James River) salinities from 1999 to 2009 presented as residuals relative to the 1979 to 2009 decadal averages.

Salinities were estimated using USGS discharge data as described in text.

Figure 12. Middle Ground (HB, James River) monthly salinities from 1999 to 2009 presented as residuals relative to the 1989 to 2009 decadal averages.

Salinity data were not available for 1979 to 1988 or October 2003 through mid-February 2004. Grey boxes distinguish even years from odd years.

HARDING AND MANN906



a size that refuge from predation faster than native gastropods.
From an invasion perspective, selection for fast growth in an

invasive whelk with generation times of 10–11mo after hatching
(Harding et al. 2007a, 2008), life expectancies of more than 25 y
(these data), and fecundity that scales nonlinearly with age
(Harding et al. 2007b, 2008) potentially has the effect of selecting

for extremely high propagule pressure.
Food limitation is probably the only factor that is likely to

hinder the maintenance of rapa whelk populations within the

lower Bay. Rapa whelks transition from epifaunal to infaunal
habitats with ontogeny. Shifts in habitat use with age corre-
spond to changes in prey type and attack methods. The

transition from eipfaunal to infaunal habitats and concurrent
changes in diet could set up a bottleneck for feeding and growth
if whelks were not mobile. Whelk mobility combined with the
proximity of deep channel habitat in the James River allows

larger whelks access to extant oyster grounds for foraging even
if (or when) suitably sized infaunal bivalve prey, notably
northern quahogs, become limiting in zone 1 or areas down-

stream. A noteworthy tipping point in food availability will
potentially be realized if submarket and market oysters
(<76 mm shell height and >76 mm shell height, respectively)

on oyster grounds in the lower James River become scarce due
to a combinationof predation [e.g., rapawhelk, blue crab, cownose
ray Rhinoptera bonasus (Mitchill, 1815)], oyster disease, freshets,

and/or fishing activity. This did not appear to be happening as of
2009 and 2010 (Southworth et al. 2010, 2011) based on modest
increases in small and market oysters observed in the lower James
River, a trend that continues as of this writing (2016).

Observed whelk demographics support the absence of food
limitation for whelk populations in the occupied range. Black
Sea rapa whelk populations have been food limited because

rapa whelk predation on top of original ecological and com-
mercial pressures drastically reduced the density and availabil-
ity of native bivalves including oysters, scallops, and mussels in

the 1960s (Drapkin 1963, Chukhchin 1984, Zolotarev 1996).
Recent Black Sea rapa whelk SL demographics rarely extend
to 100 mm (Saglam et al. 2009, Kosyan & Antipushina 2011).
These truncated demographics indicate that Black Sea rapa

whelks are reproducing but that growth rates are slow and
whelks die as they reach sizes that require larger prey items for
positive scope for growth.

The James River mesohaline dynamics offer a template for
the occupancy of the Chesapeake Bay system as a whole. The
initial projections of Bay-wide distribution have not yet been

realized and probably will not be due to a combination of
oceanography (Pritchard 1952, Mann 1988), patchy distribu-
tion of food resources (Baker & Mann 1991, Roegner & Mann

1991, Mann et al. 2005, 2009a), and ontogenetic changes in
whelk prey and habitat requirements combined with the
seasonal distribution of predators and salinity.

Rapa whelk establishment in the Chesapeake Bay resulted

from a combination of natural and anthropogenic factors. The
system-wide disturbance caused by Tropical Storm Agnes
during summer 1972 disrupted trophic dynamics and created

a niche opportunity (Shea & Chesson 2002) across annual and
decadal time scales and basin spatial scales. The normal
succession and recolonization process post-Agnes was inter-

rupted by the colonization success of rapa whelk veligers
arriving via ballast water and successfully occupying habitats
that had been formerly occupied by oyster drills in evolutionary

time. It is worthy of mention that these minor natural distur-
bances, decades rather than centuries in length and driven by

atypical meteorological events, are of minor consequence in the
absence of anthropogenic facilitation of invasions. Whelk
veligers had probably been arriving in ballast water from the
Black Sea and Mediterranean regions since at least the late

1940s given the presence of Norfolk Naval Base as well as
numerous commercial shipping terminals in the Hampton Roads
region. Environmental and ecological conditions during the late

1970s and early 1980s facilitated successful introduction, invasion,
and ultimately establishment in the temporarily vacant niche.
Ironically, implementation of the FederalWater PollutionControl

Act amendments in 1972 (i.e., theCleanWaterAct; 33U.S.C. 1251
et seq) since the early 1970s has improvedwater quality, potentially
facilitating invasion success. Continued propagule pressure from
external European sources during the 1980s and 1990s is likely

given geopolitical events and related shipping trends, whereby
commercial coal ships move from Newport News Point to the
Black Sea and ballasted bulk carriers return to the lower Ches-

apeake Bay 11 days later (Mann & Harding 2000).
The Chesapeake Bay rapa whelk invasion chronology is

more nuanced than a simple invasion story of expanding fronts,

because the potential for expansion and infill behind the front
resets every season based on a combination of changing ecolog-
ical (predators, prey) and environmental or oceanographic

conditions (salinity, temperature), where the resulting interac-
tions vary on an interannual as well as intra-annual basis
(Yackulic et al. 2015). The connectivity between the Chesapeake
Bay and coastal as well as offshore waters combined with the

seasonal migrations of whelk predators (e.g., blue crabs, sea
turtles, cownose rays) with life histories that operate on a range of
time scales and whose dynamics are individually and indepen-

dently set by anthropogenic forces to a varying extent within any
year makes the invasion progression even more challenging to
predict. As long as a reservoir of large rapa whelks resides near

the Bay mouth, there is the potential for these whelks to supply
continued generations of propagules. Ballast water transport of
veligers as well as hull or sea chest transport of recently settled
epifaunal juveniles remain as viable vectors for continued in-

oculation. Modern shipping traffic to and from regions with
established populations (native range, Black Sea,Mediterranean,
North Sea, Rio de la Plata) continues. Whelk veliger success

in the recipient Chesapeake habitat depends on the habitat, the
ambient environmental conditions, and the surrounding ecology
at micro (mm) and macro (basin wide) scales.

The Chesapeake Bay rapa whelk invasion provides an
example of how life history and ecological traits facilitated
establishment at decadal time scales. Rapawhelks have yet to be

discovered in other U.S. Western Atlantic estuaries as of this
writing. While recently settled whelks have been found on
loggerhead turtles in Georgia (Harding et al. 2011), these
whelks were almost certainly too young/small to have come

from the Chesapeake Bay. Chesapeake Bay rapa whelk pop-
ulation dynamics offer a cautionary tale based on fundamental
ecological principles. The time lag from the window of first

introduction to the first discovery of adults may be on the order
of decades depending on the size and complexity of the system
involved and the presence or absence of regular monitoring

efforts (or fisheries that would include rapa whelks as bycatch)
in the context of native species inventories. Although very few
estuaries remain undisturbed by anthropogenic activities, the
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relative temporal and spatial scales of anthropogenic and
natural disturbances are relevant to invasion success (Jackson

et al. 2009). Natural ecological resistance may remain sufficient
to keep invaders from successful establishment until unusually
large natural disturbances compound the existing anthropo-
genic perturbations with the end result of cumulative cata-

strophic disturbance that resets the system ecologically at broad
spatial scales. Afterward, the natural successional sequence will
be disrupted as natives and invaders alike scramble to take

advantage of new niche opportunities created by changes in
resource supply and distribution.
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