304 research outputs found

    Anxiety-potentiated amygdala-medial frontal coupling and attentional control

    Get PDF
    Anxiety disorders can be treated both pharmacologically and psychologically, but many individuals either fail to respond to treatment or relapse. Improving outcomes is difficult, in part because we have incomplete understanding of the neurobiological mechanisms underlying current treatments. In a sequence of studies, we have identified 'affective bias-related' amygdala-medial cortical coupling as a candidate substrate underlying adaptive anxiety (that is, anxiety elicited by threat of shock in healthy individuals) and shown that it is also chronically engaged in maladaptive anxiety disorders. We have provided evidence that this circuit can be modulated pharmacologically, but whether this mechanism can be shifted by simple psychological instruction is unknown. In this functional magnetic resonance imaging study, we extend a previously used translational anxiety induction (threat of shock) in healthy subjects (N=43) and cognitive task to include an element of instructed attentional control. Replicating our previous findings, we show that induced anxiety engages 'affective bias-related' amygdala-dorsal medial frontal coupling during the processing of emotional faces. By contrast, instructing subjects to attend to neutral shapes (and ignore faces) disengages this circuitry and increases putative 'attentional control-related' coupling between the amygdala and a more rostral prefrontal region. These neural coupling changes are accompanied by corresponding modulation of behavioural performance. Taken together, these findings serve to further highlight the potential role of amygdala-medial frontal coupling in the pathogenesis of anxiety and highlight a mechanism by which it can be modulated via psychological instructions. This, in turn, generates hypotheses for future work exploring the mechanisms underlying psychological therapeutic interventions for anxiety

    The dorsal medial prefrontal (anterior cingulate) cortex–amygdala aversive amplification circuit in unmedicated generalised and social anxiety disorders: an observational study

    Get PDF
    We have delineated, across four prior studies, the role of positive dorsal medial prefrontal/anterior cingulate cortex (dmPFC/ACC)-amygdala circuit coupling during aversive processing in healthy individuals under stress. This translational circuit, termed the 'aversive amplification circuit', is thought to drive adaptive, harm-avoidant behavior in threatening environments. Here, in a natural progression of this prior work, we confirm that this circuit also plays a role in the pathological manifestation of anxiety disorders

    Blocking human fear memory with the matrix metalloproteinase inhibitor doxycycline

    Get PDF
    Learning to predict threat is a fundamental ability of many biological organisms, and a laboratory model for anxiety disorders. Interfering with such memories in humans would be of high clinical relevance. On the basis of studies in cell cultures and slice preparations, it is hypothesised that synaptic remodelling required for threat learning involves the extracellular enzyme matrix metalloproteinase (MMP) 9. However, in vivo evidence for this proposal is lacking. Here we investigate human Pavlovian fear conditioning under the blood-brain barrier crossing MMP inhibitor doxycyline in a pre-registered, randomised, double-blind, placebo-controlled trial. We find that recall of threat memory, measured with fear-potentiated startle 7 days after acquisition, is attenuated by ~60% in individuals who were under doxycycline during acquisition. This threat memory impairment is also reflected in increased behavioural surprise signals to the conditioned stimulus during subsequent re-learning, and already late during initial acquisition. Our findings support an emerging view that extracellular signalling pathways are crucially required for threat memory formation. Furthermore, they suggest novel pharmacological methods for primary prevention and treatment of posttraumatic stress disorder.Molecular Psychiatry advance online publication, 4 April 2017; doi:10.1038/mp.2017.65

    Movement of environmental threats modifies the relevance of the defensive eye-blink in a spatially-tuned manner.

    Get PDF
    Subcortical reflexive motor responses are under continuous cortical control to produce the most effective behaviour. For example, the excitability of brainstem circuitry subserving the defensive hand-blink reflex (HBR), a response elicited by intense somatosensory stimuli to the wrist, depends on a number of properties of the eliciting stimulus. These include face-hand proximity, which has allowed the description of an HBR response field around the face (commonly referred to as a defensive peripersonal space, DPPS), as well as stimulus movement and probability of stimulus occurrence. However, the effect of stimulus-independent movements of objects in the environment has not been explored. Here we used virtual reality to test whether and how the HBR-derived DPPS is affected by the presence and movement of threatening objects in the environment. In two experiments conducted on 40 healthy volunteers, we observed that threatening arrows flying towards the participant result in DPPS expansion, an effect directionally-tuned towards the source of the arrows. These results indicate that the excitability of brainstem circuitry subserving the HBR is continuously adjusted, taking into account the movement of environmental objects. Such adjustments fit in a framework where the relevance of defensive actions is continually evaluated, to maximise their survival value

    Mega-analysis methods in ENIGMA: the experience of the generalized anxiety disorder working group

    Get PDF
    The ENIGMA group on Generalized Anxiety Disorder (ENIGMA‐Anxiety/GAD) is part of a broader effort to investigate anxiety disorders using imaging and genetic data across multiple sites worldwide. The group is actively conducting a mega‐analysis of a large number of brain structural scans. In this process, the group was confronted with many methodological challenges related to study planning and implementation, between‐country transfer of subject‐level data, quality control of a considerable amount of imaging data, and choices related to statistical methods and efficient use of resources. This report summarizes the background information and rationale for the various methodological decisions, as well as the approach taken to implement them. The goal is to document the approach and help guide other research groups working with large brain imaging data sets as they develop their own analytic pipelines for mega‐analyses

    Role of Muscarinic Acetylcholine Receptors in Serial Feature-Positive Discrimination Task during Eyeblink Conditioning in Mice.

    Get PDF
    We investigated the role of muscarinic acetylcholine receptors (mAChRs) in eyeblink serial feature-positive discrimination learning in mice using the mAChR antagonist. A 2-s light cue was delivered 5 or 6 s before the presentation of a 350-ms tone paired with a 100-ms periorbital electrical shock (cued trial) but not before the tone-alone presentation (non-cued trial). Mice received 30 cued and 30 non-cued trials each day in a random order. We found that saline-injected control mice were successfully discriminating between cued and non-cued trials within a few days of conditioning. The mice responded more frequently to the tone in cued trials than in non-cued trials. Analysis of conditioned response (CR) dynamics revealed that the CR onset latency was shorter in cued trials than in non-cued trials, despite the CR peak amplitude not differing significantly between the two conditions. In contrast, scopolamine-injected mice developed an equal number of CRs with similar temporal patterns irrespective of the presence of the cue during the 7 days of conditioning, indicating in a failure to acquire conditional discrimination. In addition, the scopolamine administration to the control mice after they had successfully acquired discrimination did not impair the conditional discrimination and expression of pre-acquired CR. These results suggest that mAChRs may play a pivotal role in memory formation in the conditional brain state associated with the feature cue; however they are unlikely to be involved in the development of discrimination after conditional memory had formed in the serial feature-positive discrimination task during eyeblink conditioning

    Pubertal maturation and sex effects on the default-mode network connectivity implicated in mood dysregulation

    Get PDF
    This study examines the effects of puberty and sex on the intrinsic functional connectivity (iFC) of brain networks, with a focus on the default-mode network (DMN). Consistently implicated in depressive disorders, the DMN’s function may interact with puberty and sex in the development of these disorders, whose onsets peak in adolescence, and which show strong sex disproportionality (females > males). The main question concerns how the DMN evolves with puberty as a function of sex. These effects are expected to involve within- and between-network iFC, particularly, the salience and the central-executive networks, consistent with the Triple-Network Model. Resting-state scans of an adolescent community sample (n = 304, male/female: 157/147; mean/std age: 14.6/0.41 years), from the IMAGEN database, were analyzed using the AFNI software suite and a data reduction strategy for the effects of puberty and sex. Three midline regions (medial prefrontal, pregenual anterior cingulate, and posterior cingulate), within the DMN and consistently implicated in mood disorders, were selected as seeds. Within- and between-network clusters of the DMN iFC changed with pubertal maturation differently in boys and girls (puberty-X-sex). Specifically, pubertal maturation predicted weaker iFC in girls and stronger iFC in boys. Finally, iFC was stronger in boys than girls independently of puberty. Brain–behavior associations indicated that lower connectivity of the anterior cingulate seed predicted higher internalizing symptoms at 2-year follow-up. In conclusion, weaker iFC of the anterior DMN may signal disconnections among circuits supporting mood regulation, conferring risk for internalizing disorders

    Novel Primate Model of Serotonin Transporter Genetic Polymorphisms Associated with Gene Expression, Anxiety and Sensitivity to Antidepressants

    Get PDF
    This is the final version of the article. It first appeared from Nature Publishing Group via https://dx.doi.org/10.1038/npp.2016.41Genetic polymorphisms in the repeat upstream region of the serotonin transporter gene (SLC6A4) are associated with individual differences in stress reactivity, vulnerability to affective disorders and response to pharmacotherapy. However, the molecular, neurodevelopmental and psychopharmacological mechanisms underlying the link between SLC6A4 polymorphisms and the emotionally vulnerable phenotype are not fully understood. Thus, using the marmoset monkey Callithrix jacchus we characterize here a new neurobiological model to help to address these questions. We first sequenced the marmoset SLC6A4 promoter and identified a double nucleotide polymorphism (−2053AC/CT) and two single nucleotide polymorphisms (−2022C/T and −1592G/C) within the repeat upstream region. We showed their association with gene expression using in vivo quantitative PCR and with affective behavior using a primate test of anxiety (human intruder test). The low-expressing haplotype (AC/C/G) was linked with high anxiety whilst the high-expressing one (CT/T/C) was associated with an active coping strategy in response to threat. Pharmacological challenge with an acute dose of the selective serotonin reuptake inhibitor (SSRI), citalopram, revealed a genotype-dependent behavioral response. Whilst individuals homozygous for the high anxiety-related haplotype AC/C/G exhibited a dose-dependent, anxiogenic response, individuals homozygous for the low anxiety-related haplotype CT/T/C showed an opposing, dose-dependent anxiolytic effect. These findings provide a novel genetic and behavioral primate model to study the molecular, neurodevelopmental and psychopharmacological mechanisms that underlie genetic variation-associated complex behaviors, with specific implications for the understanding of normal and abnormal serotonin actions and the development of personalized pharmacological treatments for psychiatric disorders.Work was supported by an MRC Programme (ACR; G0901884) and performed within the Behavioural and Clinical Neuroscience Institute, University of Cambridge, funded jointly by the Wellcome Trust and MRC. AMS was supported by a McDonnell Foundation grant (PI’s: E. Phelps, T.W. Robbins; Co-Investigators: ACR and J. LeDoux; 22002015501) and currently supported by MRC; YS supported by the Long Term Student Support Program provided by Osaka University and the Ministry of Education, Culture, Sports, Science and Technology of Japan; HC supported by MRC Career Development Award and ACFS/MI supported by grants from the MRC and Wellcome Trust. GC supported by the Behavioural and Clinical Neuroscience Institute, Cambridge, United Kingdom. EHSS was self-funded
    corecore