18,142 research outputs found
Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
Subsequence clustering of multivariate time series is a useful tool for
discovering repeated patterns in temporal data. Once these patterns have been
discovered, seemingly complicated datasets can be interpreted as a temporal
sequence of only a small number of states, or clusters. For example, raw sensor
data from a fitness-tracking application can be expressed as a timeline of a
select few actions (i.e., walking, sitting, running). However, discovering
these patterns is challenging because it requires simultaneous segmentation and
clustering of the time series. Furthermore, interpreting the resulting clusters
is difficult, especially when the data is high-dimensional. Here we propose a
new method of model-based clustering, which we call Toeplitz Inverse
Covariance-based Clustering (TICC). Each cluster in the TICC method is defined
by a correlation network, or Markov random field (MRF), characterizing the
interdependencies between different observations in a typical subsequence of
that cluster. Based on this graphical representation, TICC simultaneously
segments and clusters the time series data. We solve the TICC problem through
alternating minimization, using a variation of the expectation maximization
(EM) algorithm. We derive closed-form solutions to efficiently solve the two
resulting subproblems in a scalable way, through dynamic programming and the
alternating direction method of multipliers (ADMM), respectively. We validate
our approach by comparing TICC to several state-of-the-art baselines in a
series of synthetic experiments, and we then demonstrate on an automobile
sensor dataset how TICC can be used to learn interpretable clusters in
real-world scenarios.Comment: This revised version fixes two small typos in the published versio
Correlation of the Hippocampal theta rhythm to changes in hypothalamic temperature
Warming and cooling the preoptic anterior hypothalamic area in awake, loosely restrained rabbits was found to evoke theta rhythm. This is consistent with previous studies indicating that theta rhythm is a nonspecific response evoked by stimulation of several sensory modalities. Several studies have correlated theta rhythm with alertness. A neural pathway involving the hypothalamus, the hippocampus, the septal area, and the reticular formation is proposed. Thus, a role of this pathway may be to alert the animal to changes in its body temperature
Analytical technique for simplification of the encoder-decoder circuit for a perfect five-qubit error correction
Simpler encoding and decoding networks are necessary for more reliable
quantum error correcting codes (QECCs). The simplification of the
encoder-decoder circuit for a perfect five-qubit QECC can be derived
analytically if the QECC is converted from its equivalent one-way entanglement
purification protocol (1-EPP). In this work, the analytical method to simplify
the encoder-decoder circuit is introduced and a circuit that is as simple as
the existent simplest circuits is presented as an example. The encoder-decoder
circuit presented here involves nine single- and two-qubit unitary operations,
only six of which are controlled-NOT (CNOT) gates
Observations of breakup processes of liquid jets using real-time X-ray radiography
To unravel the liquid-jet breakup process in the nondilute region, a newly developed system of real-time X-ray radiography, an advanced digital image processor, and a high-speed video camera were used. Based upon recorded X-ray images, the inner structure of a liquid jet during breakup was observed. The jet divergence angle, jet breakup length, and fraction distributions along the axial and transverse directions of the liquid jets were determined in the near-injector region. Both wall- and free-jet tests were conducted to study the effect of wall friction on the jet breakup process
Impact of Different Fecal Processing Methods on Assessments of Bacterial Diversity in the Human Intestine.
The intestinal microbiota are integral to understanding the relationships between nutrition and health. Therefore, fecal sampling and processing protocols for metagenomic surveys should be sufficiently robust, accurate, and reliable to identify the microorganisms present. We investigated the use of different fecal preparation methods on the bacterial community structures identified in human stools. Complete stools were collected from six healthy individuals and processed according to the following methods: (i) randomly sampled fresh stool, (ii) fresh stool homogenized in a blender for 2 min, (iii) randomly sampled frozen stool, and (iv) frozen stool homogenized in a blender for 2 min, or (v) homogenized in a pneumatic mixer for either 10, 20, or 30 min. High-throughput DNA sequencing of the 16S rRNA V4 regions of bacterial community DNA extracted from the stools showed that the fecal microbiota remained distinct between individuals, independent of processing method. Moreover, the different stool preparation approaches did not alter intra-individual bacterial diversity. Distinctions were found at the level of individual taxa, however. Stools that were frozen and then homogenized tended to have higher proportions of Faecalibacterium, Streptococcus, and Bifidobacterium and decreased quantities of Oscillospira, Bacteroides, and Parabacteroides compared to stools that were collected in small quantities and not mixed prior to DNA extraction. These findings indicate that certain taxa are at particular risk for under or over sampling due to protocol differences. Importantly, homogenization by any method significantly reduced the intra-individual variation in bacteria detected per stool. Our results confirm the robustness of fecal homogenization for microbial analyses and underscore the value of collecting and mixing large stool sample quantities in human nutrition intervention studies
Space charge enhanced plasma gradient effects on satellite electric field measurements
It has been recognized that plasma gradients can cause error in magnetospheric electric field measurements made by double probes. Space charge enhanced Plasma Gradient Induced Error (PGIE) is discussed in general terms, presenting the results of a laboratory experiment designed to demonstrate this error, and deriving a simple expression that quantifies this error. Experimental conditions were not identical to magnetospheric conditions, although efforts were made to insure the relevant physics applied to both cases. The experimental data demonstrate some of the possible errors in electric field measurements made by strongly emitting probes due to space charge effects in the presence of plasma gradients. Probe errors in space and laboratory conditions are discussed, as well as experimental error. In the final section, theoretical aspects are examined and an expression is derived for the maximum steady state space charge enhanced PGIE taken by two identical current biased probes
An upper limit for the water outgassing rate of the main-belt comet 176P/LINEAR observed with Herschel/HIFI
176P/LINEAR is a member of the new cometary class known as main-belt comets
(MBCs). It displayed cometary activity shortly during its 2005 perihelion
passage that may be driven by the sublimation of sub-surface ices. We have
therefore searched for emission of the H2O 110-101 ground state rotational line
at 557 GHz toward 176P/LINEAR with the Heterodyne Instrument for the Far
Infrared (HIFI) on board the Herschel Space Observatory on UT 8.78 August 2011,
about 40 days after its most recent perihelion passage, when the object was at
a heliocentric distance of 2.58 AU. No H2O line emission was detected in our
observations, from which we derive sensitive 3-sigma upper limits for the water
production rate and column density of < 4e25 molec/s and of < 3e10 cm^{-2},
respectively. From the peak brightness measured during the object's active
period in 2005, this upper limit is lower than predicted by the relation
between production rates and visual magnitudes observed for a sample of comets
by Jorda et al. (2008) at this heliocentric distance. Thus, 176P/LINEAR was
likely less active at the time of our observation than during its previous
perihelion passage. The retrieved upper limit is lower than most values derived
for the H2O production rate from the spectroscopic search for CN emission in
MBCs.Comment: 5 pages, 2 figures. Minor changes to match published versio
Effects of Kinks on DNA Elasticity
We study the elastic response of a worm-like polymer chain with reversible
kink-like structural defects. This is a generic model for (a) the
double-stranded DNA with sharp bends induced by binding of certain proteins,
and (b) effects of trans-gauche rotations in the backbone of the
single-stranded DNA. The problem is solved both analytically and numerically by
generalizing the well-known analogy to the Quantum Rotator. In the small
stretching force regime, we find that the persistence length is renormalized
due to the presence of the kinks. In the opposite regime, the response to the
strong stretching is determined solely by the bare persistence length with
exponential corrections due to the ``ideal gas of kinks''. This high-force
behavior changes significantly in the limit of high bending rigidity of the
chain. In that case, the leading corrections to the mechanical response are
likely to be due to the formation of multi-kink structures, such as kink pairs.Comment: v1: 16 pages, 7 figures, LaTeX; submitted to Physical Review E; v2: a
new subsection on soft kinks added to section Theory, sections Introduction
and Conclusions expanded, references added, other minor changes; v3: a
reference adde
The double life of electrons in magnetic iron pnictides, as revealed by NMR
We present a phenomenological, two-fluid approach to understanding the
magnetic excitations in Fe pnictides, in which a paramagnetic fluid with
gapless, incoherent particle-hole excitations coexists with an
antiferromagnetic fluid with gapped, coherent spin wave excitations. We show
that this two-fluid phenomenology provides an excellent quantitative
description of NMR data for magnetic "122" pnictides, and argue that it finds a
natural justification in LSDA and spin density wave calculations. We further
use this phenomenology to estimate the maximum renormalisation of the ordered
moment that can follow from low-energy spin fluctuations in Fe pnictides. We
find that this is too small to account for the discrepancy between ab intio
calculations and neutron scattering measurements.Comment: Accepted for publication in Europhys. Lett. 6 pages, 4 figure
Observational and Dynamical Characterization of Main-Belt Comet P/2010 R2 (La Sagra)
We present observations of comet-like main-belt object P/2010 R2 (La Sagra)
obtained by Pan-STARRS 1 and the Faulkes Telescope-North on Haleakala in
Hawaii, the University of Hawaii 2.2 m, Gemini-North, and Keck I telescopes on
Mauna Kea, the Danish 1.54 m telescope at La Silla, and the Isaac Newton
Telescope on La Palma. An antisolar dust tail is observed from August 2010
through February 2011, while a dust trail aligned with the object's orbit plane
is also observed from December 2010 through August 2011. Assuming typical phase
darkening behavior, P/La Sagra is seen to increase in brightness by >1 mag
between August 2010 and December 2010, suggesting that dust production is
ongoing over this period. These results strongly suggest that the observed
activity is cometary in nature (i.e., driven by the sublimation of volatile
material), and that P/La Sagra is therefore the most recent main-belt comet to
be discovered. We find an approximate absolute magnitude for the nucleus of
H_R=17.9+/-0.2 mag, corresponding to a nucleus radius of ~0.7 km, assuming an
albedo of p=0.05. Using optical spectroscopy, we find no evidence of
sublimation products (i.e., gas emission), finding an upper limit CN production
rate of Q_CN<6x10^23 mol/s, from which we infer an H2O production rate of
Q_H2O<10^26 mol/s. Numerical simulations indicate that P/La Sagra is
dynamically stable for >100 Myr, suggesting that it is likely native to its
current location and that its composition is likely representative of other
objects in the same region of the main belt, though the relatively close
proximity of the 13:6 mean-motion resonance with Jupiter and the (3,-2,-1)
three-body mean-motion resonance with Jupiter and Saturn mean that dynamical
instability on larger timescales cannot be ruled out.Comment: 23 pages, 13 figures, accepted for publication in A
- …