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SPACE CHARGE ENHANCED PLASMA GRADIENT EFFECTS ON SATELLITE ELECTRIC FIELD
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In magnetospheric plasmas, it is possible for plasma gradients to cause

error in electric field measurements made by satellite double probes. In this

paper, we discuss space charge enhanced plasma gradient error in general terms,

presents the results of a laboratory experiment designed to demonstrate this

error, and derive a simple expression that quantifies this error.
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INTRODUCTION

It has been recognized for some time that plasma gradients can cause

error in magnetospheric electric field measurements made by rocket and satellite

double probes2. Figure 1 is a schematic of a satellite double probe. The

double probe technique is generally employed in the following manner: Two

probes are placed 180° apart, each at the end of a long boom. The probes are

conductors which are electrically isolated from the booms. They collect both

ions and electrons from nearby plasma and photoemit electrons into nearby

plasma. Both probes are biased to the same current, that is, equal values of

current are made to pass through each probe. The difference between the probe

voltages divided by the distance between the probes is taken to be a measure of

the average electric field in the nearby plasma.

Error in this technique occurs when the contact, or sheath, potentials

between the two probes and the ambient plasma are not equal. Differences in

contact potentials can be caused either by differences in the probes themselves

or by differences in the ambient plasma at each probe. The latter is often

referred to as PGIE (Plasma Gradient Induced Error). This paper considers only

PGIE, and it specifically examines space charge enhanced PGIE.

"Space charge" refers to electric charge that accumulates in a space or

region. Space charge exists near electron emitting probes because of the finite

time it takes emitted electrons to cross probe sheaths. This space charge

modifies the structure of the probe sheaths in a way as to tend to repel emitted

l.Fiala, V., and Storey, L.R.O., "Plasma Wakes in Space and Laboratory, "Vol. 2
(1970).

Z.Boyd, R.L.F., Space Sci. Rev. 7, 230(1967).
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electrons and force them back to the probe from which they were emitted. That

is to say, electrons emitted from a probe tend to be repelled back to that probe

by previously emitted electrons that are still in the sheath between the probe

and nearby plasma. As a result, not every electron that is emitted from a probe

necessarily escapes into the surrounding plasma. Those electrons which don't

escape do not contribute to the electric current flow between the probe and

plasma. Hence, for a given probe emissivity, the greater the space charge near

a probe, the more negative the voltage of that probe must be for a given

electrical current flow between the probe and nearby plasma.

Figures 2 and 3 graphically represent the physics discussed in the above

paragraph. Figure 2 shows the qualitative potential structure near a double

probe-satellite system when space charge effects are large enough to impede

electron flow between the ambient plasma and double probe-satellite system.

Figure 3 is a graphical representation of the emitted electron flow from one

probe.

Relatively small amounts of plasma can have rather large effects on

space charge3. As an electron emitter collects ions from the plasma, the

conservation of angular momentum allows ions to spend long periods of time in

the vicinity of the electron emitter, where they alleviate the negative space

charge from the emitted electrons. Hence, it is possible for plasma gradients

to indirectly cause error in double probe electric field measurements by causing

differences in the space charge effects at each probe.

Figure 4 is the same as figure 2, except in figure 4 it has been assumed

that the probe on the left has more space charge near it. Because of the

greater space charge, the contact potential of the probe on the left must be

lower than that of the probe on the right in order for equal electrical currents



to flow through each probe. For a situation such as that shown in figure 4, the

measured electric field would be greater than the actual electric field.

S.Kindon, K.H., Phys. Rev., 21, Series II, 408 (1923),
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LABORATORY EXPERIMENT

A laboratory experiment was conducted to demonstrate space charge

enhanced PGIE. The experimental conditions were, of course, not the same as

those found in the magnetosphere. Efforts were made to ensure that the

conditions were such that the relevant physics of the experiment applied as well

to magnetospheric conditions.

As a matter of convenience, a cylindrical, thermionically emitting probe

55 cm in length and 5 X 10~3 inch in diameter was employed in a cylindrical,

stainless steel chamber that was 64 cm in length and 60 cm in diameter. The

ratios of our probe's radius and length to the chamber's radius is the same

order of magnitude as the corresponding ratios of the radii and lengths of

satellite cylindrical double probes to magnetospheric DeBye lengths. Also, the

current emitted by our probe is on the same order of magnitude as the currents

emitted by satellite double probes. In this paper's theory section it will be

shown that the space charge enhanced PGIE depends on probe current, rather than

probe current per unit length or area.

Our probe was heated into thermionic emission by a variable, half-wave

rectified, 60 Hz heating voltage. Voltage bias sweeps between -10V and 5V were

applied to the probe though a CA3140E operational amplifier that was configured

as a voltage follower. An ORTEC Brookdeal 9415 linear gate was employed to take

data during the off cycle of the heating voltage. These voltage bias sweeps

allowed probe current vs. voltage characteristics to be measured under a variety

of conditions.

Plasma could be created by bleeding air into the machine until the

pressure reached the 10~3 torr range. The voltage drop across the probe during



the on part of the heating cycle was large enough that some of the electrons

were emitted with enough energy to ionize. Once plasma had been created in the

10~ torr range, plasma could be produced at lower pressure. The plasma density

was roughly proportional to the neutral pressure.

Three problems made the measurements difficult. The origin of all three

problems was the finite impedance between the primary and secondary of the

heating voltage transformer. The currents that flowed through the transformer's

finite impedance and also flowed through our measuring apparatus and thus were a

source of error. The three problems and our solutions to them are discussed in

detail in Appendix A.



Results and Discussion

The laboratory data shown in Fig. 5 demonstrate some of the possible

errors in electric field measurements made by strongly emitting probes due to

space charge effects in the presence of plasma gradients. Characteristics A and

B suggest that under "certain conditions", one could measure a positive, zero,

or negative electric field depending on the current bias that is chosen. We

shall first discuss these errors that the data suggest and then discuss what we

believe to be the causes of these errors, causes that are applicable to probes

in space as well as in the laboratory.

In Fig. 5, electron current that is emitted from the probe and does not

return to the probe is shown as positive current, while electron current that is

collected by the probe is shown as negative current. The current vs. voltage

characteristics A and B shown in Fig. 5 are characteristics of the same

laboratory probe taken under different probe and plasma conditions.

Specifically, probe emission was stronger and the plasma more dense when

characteristic A was taken. In the next paragraph, we will assume that

characteristics A and B are the characteristics of two probes on a satellite

that are being used to make electric field measurements. This assumption will

allow us to make several comments with regards to possible errors in satellite

electric field measurements. It would of course be an improbable coincidence

for the characteristics of any two probes on any satellite to be identical to

characteristics A and B. It is not so improbable, however, that characteristics

of space probes may, for "certain conditions", have the same features as those

of characteristics A and B that give rise to the error. Later in this section

the characteristics A and B will be examined in more detail. The focus of this



examination will the features that cause errors, the physical phenomena that

give rise to these features, and the "certain conditions" for which we might

expect these features.

So, let us suppose for the moment that characteristics A and B are the

characteristics of two probes on a satellite that are being used to make

electric field measurements. Let us further assume that both probes are biased

to the same current (that is, that there is circuitry on board the satellite

that changes the voltage of each probe until the net emitted current which flows

through each probe is equal to the desired bias current) and that the voltage

difference between the two probes is measured. The standard method for

calculating the average electric field between two current biased probes on a

satellite is to divide the measured voltage difference between the probes by the

distance between the probes.

Using this standard method, the electric field calculated from

characteristics A and B depends on the current bias that is chosen. If the

probes are biased at a current of 12 yA, the probes will indicate an electric

field that points from probe A towards probe B. If the probes are biased at

approximately 9 yA, the voltage difference, and hence the calculated electric

field also, between the two probes is approximately half the value it is for a

current bias of 12 yA. If the current bias is chosen to be approximately 6 yA,

then the probes will indicate that there is very little or approximately zero

electric field. And, if a current bias of between 0 and 5 yA is chosen, the

probes will indicate an electric field that points, not from probe A towards

probe B, but from probe B towards probe A. Hence, the magnitude and even the

direction of the calculated electric field will depend on the current bias that

is chosen. It is disturbing that the electric field calculated by this standard

method should depend on the current bias that is chosen.
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We now examine characteristics A and B in more detail. The focus of

this examination will be the features of the characteristics that give rise to

the errors described above, the physical phenomena that give rise to these

features, the "certain conditions" for which we might expect these features, and

whether these conditions are possible in space.

Although characteristics A and B are similar in many ways, they are not

identical. In particular, satellite probes are biased at "intermediate"

currents, that is currents that are not close to the saturation currents, and at

intermediate currents the slope of characteristic A is steeper than the slope of

characteristic B. It is this difference in slopes that allows the voltage

difference between characteristics A and B to vary with current. Hence, the

features of the characteristics which lead to the errors described are the

slopes of the characteristics at intermediate currents, slopes which are not

equal to one another.

Characteristics A and B were taken under different probe emission and

plasma conditions. It is the difference in plasma conditions that is primarily

responsible for the difference in slopes of the characteristics at intermediate

currents. The saturated emitted electron current and the saturated collected

current of characteristic A are greater than the corresponding currents of

characteristic B. This indicates that the probe was more strongly emitting and

that the plasma was denser and/or hotter when characteristic A was measured.



THEORY

^It has been known for some time that small amounts of plasma can

greatly affect the space charge near an electron emitter. Quantifying the

effects that an arbitrary number of ions have on the space charge surrounding a

particular electron emitting probe can be rather difficult, and we do not

attempt to do so here. Rather, we take a more general approach to the problem.

For a given probe emissivity and a given probe bias current, the voltage of a

probe is minimum when the probe is in a vacuum because that is when the space

charge near that probe is maximum. Likewise, for a given probe emissivity and

bias current, the voltage of a probe is maximum when the probe is in a plasma

which is dense enough that the plasma ions alleviate the space charge near the

probe to a level of insignificance. In this paper, we derive an expression for

the maximum steady state space charge enhanced plasma gradient error in the

electric field measurements taken by two identical, current biased probes by

considering on of those probes to be in a vacuum and the other probe to be in a

plasma which is dense enough that the plasma ions alleviate the space charge

near the probe.

The reader should beware that although we derive an expression for

maximum error, we do not take into account many things which might change that

maximum error. Among the effects that we do not take into account are: most

particularly, transient effects, i.e., gradients which pass by the probes

quickly enough that their effects are capacitively coupled to the probes; the

nonzero temperatures of emitted electrons; magnetic fields; and leakage

currents, i.e., currents which flow directly between the probes and the
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satellite without passing through the ambient plasma.

To begin our derivation of a simple expression of the maximum expected

space charge enhanced PGIE, the reader is referred to figure 6. The potential

structures around two probes, the "left" probe and the "right" probe, are shown

in figure 6. For simplicity, the electric field in the ambient plasma has been

ignored and the potential structure of the satellite has been omitted. Further,

we will assume that the left probe is in a vacuum (or near vacuum). Also, we

assume that d d X , where X is the DeBye length of the ambient plasma.

Note the minimum in the potential structure of the left probe. This

minimum is created by space charge. If the minimum, and the potential structure

of the left probe, is to stay constant with time, then the space charge at and

near the minimum must remain constant with time. For this to happen, and it is

the steady state condition which we assume, the current that flows from the

j probe to the minimum must be equal to the current that flows from the minimum to

| the ambient plasma. Further, when the two currents are equal to one another, as

we assume, then they are also equal to the current which flows from the probe to

the plasma. We denote these currents by I .
L

Now, when considering I to be the current from the left probe to its
L

associated potential minimum, I can be rewritten as
L

eq. 1 I = I exp(-eA* /T )
Li & J ©

where I is a constant that is often referred to as the emitted electron

saturation current and Te is the temperature of the emitted electrons.

The current I from the minimum to the ambient plasma can be rewritten
L

as
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eqs. 2 I (yA) = 14.7A<j>3/2 when the probe and its sheath are cylindrical
L

and, I (yA) = 29.4A<|>3/2/a2 when the probe and its sheath are spherical
L

where a2 is very weakly dependent on the ratio of the probe radius to X . a2 is

on the order of 5. Equations 2 are just the well known Child-Langmuir Law

rewritten in our notation for the situation depicted in figure 6. The

Child-Langmuir Law describes the current flow from a region of zero electric

field to a boundary. It is appropriate to use the Chile-Langmuir Law to

describe the current flow form the minimum in the potential structure of the

left probe to the ambient plasma because the electric field at the minimum is

zero. The reader may wish to note that for simplicity, we have assumed that T

is zero when writing the Child-Langmuir Law.

The current I that flows from the right probe to the plasma is
R

eq.3 I = I exp(-eA* /T )
R S 4 6

where the I and T have been assumed to be equal to those of eq. 1 because the
S Q

physical characteristics of the left and right probes have been assumed to be

the same. Also, if the probes are biased to the same current I , as we assume,
B

then I =1 = I . It follows that A<|> = A<|> .
R B L 3 T4

The reader should take the time to make sure that he or she understands

A.Kingdon, K.H., Phys. Rev., 21, Series II, 408 (1923).

5.Langmuir, I., and Blodgett, K., Phys. Rev. 22, 347 (1923)

6.Child (1911).
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this last point, that A<|> = A<|> . It is important. By inspection of figure 6,
3 4

the reader should see that when A<)> = A<|> , A<f> = A<|> . By further inspection of

figure 6, the reader should also see that A<|> is the space charge induced PGIE.

Once these things are understood, it is trivial to write an expression

for the maximum expected space charge enhanced PGIE from equations 2 as

eq. 4 E (Volts/meter) = [I (uAmps)/15]2/3/d(meters) when the probe and
M B

sheath are cylindrical,

and, EM(Volts/meter) = [I (yAmps)a
2/30]2/3/d(meters) when the probe and

sheath are spherical

where E is the maximum expected error in double probe electric field
M

measurements due to space charge enhanced PGIE, I is the current to which each
B

probe of the double probe is biased to, and d is the distance between those two

probes. Typical values of a2 are 0.509, 1.022, 2.073, 4.002, 5.324, 6.933, and

8.523 which correspond to ratios of sheath radius to probe radius of 1.8, 4.4,

14, 160, 1000, 10000, and 100000, respectively5[Langmuir Blodgett (1923)].

7.Langmuir (1913).
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Appendix A

The measuring of probe current vs. voltage characteristics was

complicated by the finite impedance between the primary and secondary of the

heating voltage transformer. Fig. *7/25,l is a schematic of the electrical

components that are pertinent to this discussion. Components A through C

provide the voltage that heats the probe D into thermionic emission. Component A

represents the line voltage (120 V, 60 Hz), B is a variac or variable voltage

transformer, and C is an isolation transformer. Component E is a voltage ramp

(that is, a voltage with respect to ground that increases linearly with time)

which is applied to the probe through the voltage follower F. G is the point at

which the "probe voltage" or "bias voltage of the probe" is measured. Component

H represents the vacuum vessel wall and its ground. I depicts the vacuum or

plasma that lies between the probe and vacuum vessel wall.

Note that there are four grounds, M, H, K, and N. The current that we

are interested in, the current which is suppose to correspond to the current in

a probe's current vs. voltage characteristic, is the current that flows between

the probe D and the ground H. The impedance between the probe D and the ground

N should be quite large; it should be on the order of the input resistance of

the voltage follower F, which is a CA3140 op amp and has a nominal input

resistance of 10128. Ideally the impedance between the probe D and ground M is

also quite large because of the large impedance between the primary and

secondary of the isolation transformer C. In this case, the current that flows

from ground H to probe D completes its circuit by flowing from probe D through

the voltage follower F and the resistor J to ground K. The current through the

probe is then calculated by dividing the voltage measured at point L by the

resistance of J.
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Unfortunately, the impedance between the primary and secondary of our

isolation transformer C is small enough to allow significant current to flow

between ground M and grounds H and K. In fact, during most times in the heating

cycle, the current flowing to our ground K is dominated by current flowing from

M through C, F, and J to K and not by the current that we wish to measure which

is the current that flows from H through I, D, F, and J to K.

There are two types of impedance across C that are of concern,

capacitance and resistance. There is finite capacitance between the primary and

secondary windings of C because of their proximity to one another. Fig. *7/25,2

is a simplified approximation of Fig. *7/25,l and depicts the circuit elements

essential in understanding how we avoid the problem caused by the capacitance

across the isolation transformer. V in Fig. *7/25,2 corresponds to the voltage

across the primary of the isolation transformer and Z is the value of the

impedance due to the finite capacitance across the transformer. E is a voltage

sweep of the same value as the voltage sweep depicted in Fig. *7/25,l and

represents the output of the voltage follower F, R is the resistance of the
J

resistor J, and R is the "sheath" resistance or the approximate resistance

between the probe D and the ground H.

It is common practice to make R much less than R , and Z is usually
J S C

much greater than either R or R . In other words,
J S

Z » R »Rc J s *Eq. 7,25,1

Hence, most of the current that flows from ground M flows to ground K and not to

ground H. Also, the phase of this cyclical current proceeds V by Jt/4; the

current passes through zero when V passes through its maximum and minimum. We

can essentially eliminate the effect of this unwanted current on our

15



measurements of probe current vs. voltage characteristics by monitoring V and

triggering a temporally short voltage pulse at the minimum of each cycle of V .

This voltage pulse is in turn used to trigger a linear gate, which samples the

voltage at point L in fig. *7/25,l during (and only during) the voltage pulse.

In this way, data are sampled periodically at a time in the cycle of the

unwanted current when the amplitude of the current is near zero.

There is also a finite resistive impedance across the isolation

transformer C. The resistance across our particular transformer only becomes

troublesome when the heating voltage is applied to the probe for over 20

seconds. It is our conjecture that with time the transformer becomes warm, the

resistance across C decreases, and as a result the current across the resistance

increases and starts to be noticeable on the measured current vs. voltage

characteristic.

Our solution to this problem is to simply measure the characteristics

quickly, before there is a noticeable resistive current. There are of course

limits as to how quickly the characteristics can be measured. We've noticed

that the emitted current continues to increase for the first few seconds after

the heating voltage is applied before leveling off to a constant value.

Presumably, the probe is warming up during these first few seconds. Note that

the warming takes place immediately after the heating voltage is applied to the

probe while the resistance does not become too small for making measurements

until some time after. Further, these two currents are of opposite sign, that

is, warming increases the emitted current while the finite resistance decreases

the measured emitted current (because some of the emitted current flows through

I ground M rather than ground K). Hence, we have a check on these two effects.

We measure each characteristic twice, with enough time between the measurements

to allow the transformer to cool down. The first characteristic is measured by
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sweeping the probe from low voltage to high voltage; the second characteristic

is measured by sweeping from high to low. The measurement is good when there is

good agreement between the two characteristics. When the warming of the probe

and/or the warming of the transformer is a problem, the two characteristics do

not agree at either low and/or high voltages, that is, at either early and/or

late times in the sweeps.

Lastly, if our conjecture is correct that the resistance across the

transformer decreases with time as the transformer heats up, an increase in the

size the transformer might help by increasing the time it takes the transformer

to warm up. However, increasing the size would probably also increase the

capacitance between the primary and secondary. An increase in this capacitance

would make the problem of finite capacitive impedance more acute.
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