1,685 research outputs found
Evaluation of innovative sprayed-concrete-lined tunnelling
The front-shunt tunnel was the first tunnel of the Terminal 5 project at Heathrow to be constructed, and was the first section of sprayed-concrete-lined (SCL) tunnel to be constructed using the method known as LaserShell. This innovation represented a significant deviation from the methods previously used in SCL construction. Therefore it was subjected to a careful examination before and during construction using sophisticated 3D numerical modelling and monitoring during construction. The paper presents typical results from surface settlement levelling, inclinometers and extensometers, pressure cells and tunnel lining displacement measurements, and comments on the performance of the methods and instruments used. The paper then presents the methodology and typical results of the numerical modelling, and shows that the predictions of displacements and stresses compared well with the field measurements. In terms of the control of ground deformations and structural safety the tunnel performed well
Effects of Nuclear Structure on Quasi-fission
The quasi-fission mechanism hinders fusion of heavy systems because of a mass
flow between the reactants, leading to a re-separation of more symmetric
fragments in the exit channel. A good understanding of the competition between
fusion and quasi-fission mechanisms is expected to be of great help to optimize
the formation and study of heavy and superheavy nuclei. Quantum microscopic
models, such as the time-dependent Hartree-Fock approach, allow for a treatment
of all degrees of freedom associated to the dynamics of each nucleon. This
provides a description of the complex reaction mechanisms, such as
quasi-fission, with no parameter adjusted on reaction mechanisms. In
particular, the role of the deformation and orientation of a heavy target, as
well as the entrance channel magicity and isospin are investigated with
theoretical and experimental approaches.Comment: Invited talk to NSRT12. To be published in Eur. Phys. J. Web of Con
Sensitivity to the initial state of interacting ultracold bosons in disordered lattices
We study the dynamics of a nonlinear one-dimensional disordered system
obtained by coupling the Anderson model with the Gross-Pitaevskii equation. An
analytical model provides us with a single quantity globally characterizing the
localization of the system. This quantity obeys a scaling law with respect to
the width of the initial state, which can be used to characterize the dynamics
independently of the initial state.Comment: 10 pages, 12 figures, revtex4, submited to PR
Verifying Temporal Regular Properties of Abstractions of Term Rewriting Systems
The tree automaton completion is an algorithm used for proving safety
properties of systems that can be modeled by a term rewriting system. This
representation and verification technique works well for proving properties of
infinite systems like cryptographic protocols or more recently on Java Bytecode
programs. This algorithm computes a tree automaton which represents a (regular)
over approximation of the set of reachable terms by rewriting initial terms.
This approach is limited by the lack of information about rewriting relation
between terms. Actually, terms in relation by rewriting are in the same
equivalence class: there are recognized by the same state in the tree
automaton.
Our objective is to produce an automaton embedding an abstraction of the
rewriting relation sufficient to prove temporal properties of the term
rewriting system.
We propose to extend the algorithm to produce an automaton having more
equivalence classes to distinguish a term or a subterm from its successors
w.r.t. rewriting. While ground transitions are used to recognize equivalence
classes of terms, epsilon-transitions represent the rewriting relation between
terms. From the completed automaton, it is possible to automatically build a
Kripke structure abstracting the rewriting sequence. States of the Kripke
structure are states of the tree automaton and the transition relation is given
by the set of epsilon-transitions. States of the Kripke structure are labelled
by the set of terms recognized using ground transitions. On this Kripke
structure, we define the Regular Linear Temporal Logic (R-LTL) for expressing
properties. Such properties can then be checked using standard model checking
algorithms. The only difference between LTL and R-LTL is that predicates are
replaced by regular sets of acceptable terms
An analysis method for time ordered data processing of Dark Matter experiments
The analysis of the time ordered data of Dark Matter experiments is becoming
more and more challenging with the increase of sensitivity in the ongoing and
forthcoming projects. Combined with the well-known level of background events,
this leads to a rather high level of pile-up in the data. Ionization,
scintillation as well as bolometric signals present common features in their
acquisition timeline: low frequency baselines, random gaussian noise, parasitic
noise and signal characterized by well-defined peaks. In particular, in the
case of long-lasting signals such as bolometric ones, the pile-up of events may
lead to an inaccurate reconstruction of the physical signal (misidentification
as well as fake events). We present a general method to detect and extract
signals in noisy data with a high pile-up rate and qe show that events from few
keV to hundreds of keV can be reconstructed in time ordered data presenting a
high pile-up rate. This method is based on an iterative detection and fitting
procedure combined with prior wavelet-based denoising of the data and baseline
subtraction. {We have tested this method on simulated data of the MACHe3
prototype experiment and shown that the iterative fitting procedure allows us
to recover the lowest energy events, of the order of a few keV, in the presence
of background signals from a few to hundreds of keV. Finally we applied this
method to the recent MACHe3 data to successfully measure the spectrum of
conversion electrons from Co57 source and also the spectrum of the background
cosmic muons
Giant Magnons and Singular Curves
We obtain the giant magnon of Hofman-Maldacena and its dyonic generalisation
on R x S^3 < AdS_5 x S^5 from the general elliptic finite-gap solution by
degenerating its elliptic spectral curve into a singular curve. This alternate
description of giant magnons as finite-gap solutions associated to singular
curves is related through a symplectic transformation to their already
established description in terms of condensate cuts developed in
hep-th/0606145.Comment: 34 pages, 17 figures, minor change in abstrac
Influence of blade aerodynamic model on the prediction of helicopter high-frequency airloads
Brownâs vorticity transport model has been used to investigate the inïŹuence of the blade aerodynamic model on the accuracy with which the high-frequency airloads associated with helicopter bladeâvortex interactions can be predicted. The model yields an accurate representation of the wake structure yet allows signiïŹcant ïŹexibility in the way that the blade loading can be represented. A simple lifting-line model and a somewhat more sophisticated liftingchord model, based on unsteady thin aerofoil theory, are compared. A marked improvement in the accuracy of the predicted high-frequency airloads of the higher harmonic control aeroacoustic rotor is obtained when the liftingchord model is used instead of the lifting-line approach, and the quality of the prediction is affected less by the computational resolution of the wake. The lifting-line model overpredicts the amplitude of the lift response to bladeâvortex interactions as the computational grid is reïŹned, exposing the fundamental deïŹciencies in this approach when modeling the aerodynamic response of the blade to interactions with vortices that are much smaller than its chord. The airloads that are predicted using the lifting-chord model are relatively insensitive to the resolution of the computation, and there are fundamental reasons to believe that properly converged numerical solutions may be attainable using this approach
Measurement of the response of heat-and-ionization germanium detectors to nuclear recoils
The heat quenching factor Q' (the ratio of the heat signals produced by
nuclear and electron recoils of equal energy) of the heat-and-ionization
germanium bolometers used by the EDELWEISS collaboration has been measured. It
is explained how this factor affects the energy scale and the effective
quenching factor observed in calibrations with neutron sources. This effective
quenching effect is found to be equal to Q/Q', where Q is the quenching factor
of the ionization yield. To measure Q', a precise EDELWEISS measurement of Q/Q'
is combined with values of Q obtained from a review of all available
measurements of this quantity in tagged neutron beam experiments. The
systematic uncertainties associated with this method to evaluate Q' are
discussed in detail. For recoil energies between 20 and 100 keV, the resulting
heat quenching factor is Q' = 0.91+-0.03+-0.04, where the two errors are the
contributions from the Q and Q/Q' measurements, respectively. The present
compilation of Q values and evaluation of Q' represent one of the most precise
determinations of the absolute energy scale for any detector used in direct
searches for dark matter.Comment: 28 pages, 7 figures. Submitted to Phys. Rev.
- âŠ