26 research outputs found

    Groovy and Gnarly: Surface Wrinkles as a Multifunctional Motif for Terrestrial and Marine Environments

    Get PDF
    From large ventral pleats of humpback whales to nanoscale ridges on flower petals, wrinkled structures are omnipresent, multifunctional, and found at hugely diverse scales. Depending on the particulars of the biological system—its environment, morphology, and mechanical properties—wrinkles may control adhesion, friction, wetting, or drag; promote interfacial exchange; act as flow channels; or contribute to stretching, mechanical integrity, or structural color. Undulations on natural surfaces primarily arise from stress-induced instabilities of surface layers (e.g., buckling) during growth or aging. Variation in the material properties of surface layers and in the magnitude and orientation of intrinsic stresses during growth lead to a variety of wrinkling morphologies and patterns which, in turn, reflect the wide range of biophysical challenges wrinkled surfaces can solve. Therefore, investigating how surface wrinkles vary and are implemented across biological systems is key to understanding their structure-function relationships. In this work, we synthesize the literature in a metadata analysis of surface wrinkling in various terrestrial and marine organisms to review important morphological parameters and classify functional aspects of surface wrinkles in relation to the size and ecology of organisms. Building on our previous and current experimental studies, we explore case studies on nano/micro-scale wrinkles in biofilms, plant surfaces, and basking shark filter structures to compare developmental and structure-vs-function aspects of wrinkles with vastly different size scales and environmental demands. In doing this and by contrasting wrinkle development in soft and hard biological systems, we provide a template of structure-function relationships of biological surface wrinkles and an outlook for functionalized wrinkled biomimetic surfaces

    Importance of latrine communication in European rabbits shifts along a rural–to–urban gradient

    Get PDF
    Information transfer in mammalian communication networks is often based on the deposition of excreta in latrines. Depending on the intended receiver(s), latrines are either formed at territorial boundaries (between-group communication) or in core areas of home ranges (within-group communication). The relative importance of both types of marking behavior should depend, amongst other factors, on population densities and social group sizes, which tend to differ between urban and rural wildlife populations. Our study is the first to assess (direct and indirect) anthropogenic influences on mammalian latrine-based communication networks along a rural-to-urban gradient in European rabbits (Oryctolagus cuniculus) living in urban, suburban and rural areas in and around Frankfurt am Main (Germany)

    Predator-induced changes of female mating preferences: innate and experiential effects

    Get PDF
    Background: In many species males face a higher predation risk than females because males display elaborate traits that evolved under sexual selection, which may attract not only females but also predators. Females are, therefore, predicted to avoid such conspicuous males under predation risk. The present study was designed to investigate predator-induced changes of female mating preferences in Atlantic mollies (Poecilia mexicana). Males of this species show a pronounced polymorphism in body size and coloration, and females prefer large, colorful males in the absence of predators. Results: In dichotomous choice tests predator-naĂŻve (lab-reared) females altered their initial preference for larger males in the presence of the cichlid Cichlasoma salvini, a natural predator of P. mexicana, and preferred small males instead. This effect was considerably weaker when females were confronted visually with the non-piscivorous cichlid Vieja bifasciata or the introduced non-piscivorous Nile tilapia (Oreochromis niloticus). In contrast, predator experienced (wild-caught) females did not respond to the same extent to the presence of a predator, most likely due to a learned ability to evaluate their predators' motivation to prey. Conclusions: Our study highlights that (a) predatory fish can have a profound influence on the expression of mating preferences of their prey (thus potentially affecting the strength of sexual selection), and females may alter their mate choice behavior strategically to reduce their own exposure to predators. (b) Prey species can evolve visual predator recognition mechanisms and alter their mate choice only when a natural predator is present. (c) Finally, experiential effects can play an important role, and prey species may learn to evaluate the motivational state of their predators. Keywords: Sexual selection; female choice; non-independent mate choice; predator recognition; Poecilia mexican

    Trailerport. Bericht 4: Handbuch

    No full text
    SIGLEAvailable from TIB Hannover: QN 131(4) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Forschung und Technologie (BMFT), Bonn (Germany)DEGerman
    corecore