197 research outputs found

    Normal vector analysis from GNSS-GPS data applied to Deception volcano surface deformation

    Get PDF
    Surface deformation parameters and its use in volcano monitoring have evolved from classical geodetic procedures up to those based on Global Navigation Satellite Systems (GNSS), in particular the most widely used and known Global Positioning System (GPS), profiting from the automated data processing, positioning precision and rates, as well as the large storage capacity and low power consumption of its equipments. These features have enabled the permanent GNSSGPS data acquisition to ensure the continuous monitoring of geodetic benchmarks for the evaluation of surface deformation in active tectonic or volcanic areas. In Deception Island (Antarctica), a normal vector analysis is being used to give surface deformation based on three permanently observed GNSSGPS benchmarks. Due to data availability, both in the past and for near real-time use, all benchmarks used are inside the monitored volcanic area, although the reference is away from thermal springs and/or fumaroles, unlike the other two. The time variation of slope distances to the reference benchmark and of the magnitude and inclination of the normal vector to the triangle defined by the reference benchmark and any other two, provides the spatial deformation in the volcanic area covered. The normal vector variation in magnitude gives information on compression or expansion, here called spatial dilatometer, while the changes in inclination gives information on relative uplift or subsidence, here called spatial inclinometer. In geodesy, the triangle is a basic geometric unit and the areal strain is commonly applied in tectonics and volcanism. The normal vector analysis conjugates both, benefiting from the method's precision, simplicity and possibility to model the surface using several triangles. The proposed method was applied to GNSSGPS data collected every austral summer between 20012002 and 20092010 in Deception Island. The results evidence that Deception Island acts as a strain marker in the Bransfield Basin volcano-tectonic setting.Spanish Ministry of Education and Science as part of the National Antarctic Program; Recognition and fast evaluation of volcanic activity on Deception Island (GEODESY) [ANT1999-1430-E/HESP]; Geodetic Studies on Deception Island: deformation models, geoid determination and Scientific Information System [REN2000-0551-C03-01/ANT]; Acquisition of scientific software for GPS data processing [REN2000-2690-E]; Geodetic Control of the volcanic activity of Deception Island [CGL2004-21547-E/ANT]; Update of the Spanish Cartography for Deception Island [CGL2004-20408-E/ANT]; Volcanotectonic activity on Deception Island: geodetic, geophysical investigations and Remote Sensing on Deception Island and its surroundings [CGLl2005-07589-c03-01/ANT]; Geodetic and Geothermal Researches, Time Serial Analysis and Volcanic Innovation in Antarctica (South Shetland Islands and Antarctic Peninsula (GEOTINANT) [CTM2009-07251/ANT]info:eu-repo/semantics/publishedVersio

    Database of multiparametric geophysical data from the TOMO-DEC experiment on Deception Island, Antarctica

    Get PDF
    We are grateful to the officers and crew of the Spanish vessels 'R/V Hesperides' and 'R/V Las Palmas', the personnel of the Marine Technology Unit (UTM), the military personnel of the 'Gabriel de Castilla' Spanish base, and the members of the TOMODEC Working Group. This manuscript has been partially funded by the following research projects: the Spanish project TEC2015-68752-R (MINECO/FEDER); KNOWAVES; the Spanish Education and Research Ministry grants REN 2001-3833, CGL2005-05789-C02-02/ANT, POL2006-08663, and CGL2008-01660; the U.S. National Science Foundation grant ANT-0230094; the European project MED-SUV funded by the European Union's Seventh Framework Program for research, technological development and demonstration under grant agreement No 308665; the European project EPOS; the European Union's Horizon 2020 research and innovation programme under grant agreement No 676564; and the U.S. National Science Foundation grant NSF-1521855 Hazard SEES project. Ocean bottom seismometers were provided by the U.S National Oceanographic Instrument Pool. This publication reflects only the authors' views. The European Commission is not responsible for any use that may be made of the information it contains.Deception Island volcano (Antarctica) is one of the most closely monitored and studied volcanoes on the region. In January 2005, a multi-parametric international experiment was conducted that encompassed both Deception Island and its surrounding waters. We performed this experiment from aboard the Spanish oceanographic vessel 'Hesperides', and from five land-based locations on Deception Island (the Spanish scientific Antarctic base 'Gabriel de Castilla' and four temporary camps). This experiment allowed us to record active seismic signals using a large network of seismic stations that were deployed both on land and on the seafloor. In addition, other geophysical data were acquired, including bathymetric high precision multi-beam data, and gravimetric and magnetic profiles. To date, the seismic and bathymetric data have been analysed but the magnetic and gravimetric data have not. We provide P-wave arrival-time picks and seismic tomography results in velocity and attenuation. In this manuscript, we describe the main characteristics of the experiment, the instruments, the data, and the repositories from which data and information can be obtained.MINECO/FEDER TEC2015-68752-RKNOWAVESSpanish Education and Research Ministry REN 2001-3833 CGL2005-05789-C02-02/ANT POL2006-08663 CGL2008-01660National Science Foundation (NSF) ANT-0230094 NSF-1521855European project MED-SUV - European Union's Seventh Framework Program 308665European project EPOSEuropean Union (EU) 67656

    Mechanism of Inhibition of Enveloped Virus Membrane Fusion by the Antiviral Drug Arbidol

    Get PDF
    The broad-spectrum antiviral arbidol (Arb) inhibits cell entry of enveloped viruses by blocking viral fusion with host cell membrane. To better understand Arb mechanism of action, we investigated its interactions with phospholipids and membrane peptides. We demonstrate that Arb associates with phospholipids in the micromolar range. NMR reveals that Arb interacts with the polar head-group of phospholipid at the membrane interface. Fluorescence studies of interactions between Arb and either tryptophan derivatives or membrane peptides reconstituted into liposomes show that Arb interacts with tryptophan in the micromolar range. Interestingly, apparent binding affinities between lipids and tryptophan residues are comparable with those of Arb IC50 of the hepatitis C virus (HCV) membrane fusion. Since tryptophan residues of membrane proteins are known to bind preferentially at the membrane interface, these data suggest that Arb could increase the strength of virus glycoprotein's interactions with the membrane, due to a dual binding mode involving aromatic residues and phospholipids. The resulting complexation would inhibit the expected viral glycoprotein conformational changes required during the fusion process. Our findings pave the way towards the design of new drugs exhibiting Arb-like interfacial membrane binding properties to inhibit early steps of virus entry, i.e., attractive targets to combat viral infection

    Heparin Induces Harmless Fibril Formation in Amyloidogenic W7FW14F Apomyoglobin and Amyloid Aggregation in Wild-Type Protein In Vitro

    Get PDF
    Glycosaminoglycans (GAGs) are frequently associated with amyloid deposits in most amyloid diseases, and there is evidence to support their active role in amyloid fibril formation. The purpose of this study was to obtain structural insight into GAG-protein interactions and to better elucidate the molecular mechanism underlying the effect of GAGs on the amyloid aggregation process and on the related cytotoxicity. To this aim, using Fourier transform infrared and circular diochroism spectroscopy, electron microscopy and thioflavin fluorescence dye we examined the effect of heparin and other GAGs on the fibrillogenesis and cytotoxicity of aggregates formed by the amyloidogenic W7FW14 apomyoglobin mutant. Although this protein is unrelated to human disease, it is a suitable model for in vitro studies because it forms amyloid-like fibrils under physiological conditions of pH and temperature. Heparin strongly stimulated aggregation into amyloid fibrils, thereby abolishing the lag-phase normally detected following the kinetics of the process, and increasing the yield of fibrils. Moreover, the protein aggregates were harmless when assayed for cytotoxicity in vitro. Neutral or positive compounds did not affect the aggregation rate, and the early aggregates were highly cytotoxic. The surprising result that heparin induced amyloid fibril formation in wild-type apomyoglobin and in the partially folded intermediate state of the mutant, i.e., proteins that normally do not show any tendency to aggregate, suggested that the interaction of heparin with apomyoglobin is highly specific because of the presence, in protein turn regions, of consensus sequences consisting of alternating basic and non-basic residues that are capable of binding heparin molecules. Our data suggest that GAGs play a dual role in amyloidosis, namely, they promote beneficial fibril formation, but they also function as pathological chaperones by inducing amyloid aggregation

    Virtual histological assessment of the prenatal life history and age at death of the Upper Paleolithic fetus from Ostuni (Italy)

    Get PDF
    The fetal remains from the Ostuni 1 burial (Italy, ca 27 ka) represent a unique opportunity to explore the prenatal biological parameters, and to reconstruct the possible patho-biography, of a fetus (and its mother) in an Upper Paleolithic context. Phase-contrast synchrotron X-ray microtomography imaging of two deciduous tooth crowns and microfocus CT measurements of the right hemimandible of the Ostuni 1b fetus were performed at the SYRMEP beamline and at the TomoLab station of the Elettra - Sincrotrone laboratory (Trieste, Italy) in order to refne age at death and to report the enamel developmental history and dental tissue volumes for this fetal individual. The virtual histology allowed to estimate the age at death of the fetus at 31–33 gestational weeks. Three severe physiological stress episodes were also identifed in the prenatal enamel. These stress episodes occurred during the last two months and half of pregnancy and may relate to the death of both individuals. Compared with modern prenatal standards, Os1b’s skeletal development was advanced. This cautions against the use of modern skeletal and dental references for archaeological fnds and emphasizes the need for more studies on prenatal archaeological skeletal samples

    The Bactofilin Cytoskeleton Protein BacM of Myxococcus xanthus Forms an Extended β-Sheet Structure Likely Mediated by Hydrophobic Interactions

    Get PDF
    Bactofilins are novel cytoskeleton proteins that are widespread in Gram-negative bacteria. Myxococcus xanthus, an important predatory soil bacterium, possesses four bactofilins of which one, BacM (Mxan_7475) plays an important role in cell shape maintenance. Electron and fluorescence light microscopy, as well as studies using over-expressed, purified BacM, indicate that this protein polymerizes in vivo and in vitro into ~3 nm wide filaments that further associate into higher ordered fibers of about 10 nm. Here we use a multipronged approach combining secondary structure determination, molecular modeling, biochemistry, and genetics to identify and characterize critical molecular elements that enable BacM to polymerize. Our results indicate that the bactofilin-determining domain DUF583 folds into an extended β-sheet structure, and we hypothesize a left-handed β-helix with polymerization into 3 nm filaments primarily via patches of hydrophobic amino acid residues. These patches form the interface allowing head-to-tail polymerization during filament formation. Biochemical analyses of these processes show that folding and polymerization occur across a wide variety of conditions and even in the presence of chaotropic agents such as one molar urea. Together, these data suggest that bactofilins are comprised of a structure unique to cytoskeleton proteins, which enables robust polymerization

    Formation and Growth of Oligomers: A Monte Carlo Study of an Amyloid Tau Fragment

    Get PDF
    Small oligomers formed early in the process of amyloid fibril formation may be the major toxic species in Alzheimer's disease. We investigate the early stages of amyloid aggregation for the tau fragment AcPHF6 (Ac-VQIVYK-NH2) using an implicit solvent all-atom model and extensive Monte Carlo simulations of 12, 24, and 36 chains. A variety of small metastable aggregates form and dissolve until an aggregate of a critical size and conformation arises. However, the stable oligomers, which are β-sheet-rich and feature many hydrophobic contacts, are not always growth-ready. The simulations indicate instead that these supercritical oligomers spend a lengthy period in equilibrium in which considerable reorganization takes place accompanied by exchange of chains with the solution. Growth competence of the stable oligomers correlates with the alignment of the strands in the β-sheets. The larger aggregates seen in our simulations are all composed of two twisted β-sheets, packed against each other with hydrophobic side chains at the sheet–sheet interface. These β-sandwiches show similarities with the proposed steric zipper structure for PHF6 fibrils but have a mixed parallel/antiparallel β-strand organization as opposed to the parallel organization found in experiments on fibrils. Interestingly, we find that the fraction of parallel β-sheet structure increases with aggregate size. We speculate that the reorganization of the β-sheets into parallel ones is an important rate-limiting step in the formation of PHF6 fibrils

    Mapping the Conformational Dynamics and Pathways of Spontaneous Steric Zipper Peptide Oligomerization

    Get PDF
    The process of protein misfolding and self-assembly into various, polymorphic aggregates is associated with a number of important neurodegenerative diseases. Only recently, crystal structures of several short peptides have provided detailed structural insights into -sheet rich aggregates, known as amyloid fibrils. Knowledge about early events of the formation and interconversion of small oligomeric states, an inevitable step in the cascade of peptide self-assembly, however, remains still limited
    corecore