84 research outputs found

    A 12.5 GHz-Spaced Optical Frequency Comb Spanning >400 nm for near-Infrared Astronomical Spectrograph Calibration

    Full text link
    A 12.5 GHz-spaced optical frequency comb locked to a Global Positioning disciplined oscillator for near-IR spectrograph calibration is presented. The comb is generated via filtering a 250 MHz-spaced comb. Subsequency nonlinear broadening of the 12.5 GHz comb extends the wavelength range to cover 1380 nm to 1820 nm, providing complete coverage over the H-band transmission widow of Earth's atmosphere. Finite suppression of spurious sidemodes, optical linewidth and instability of the comb have been examined to estmiate potential wavelength biases in spectrograph calibration. Sidemode suppression varies between 20 db and 45 dB, and the optical linewidth is ~350 kHz at 1550 nm. The comb frequency uncertainty is bounded by +/- 30 kHz (corresponding to a radial velocity of +/- 5 cm/s), limited by the Global Positioning System disciplined oscillator reference. These results indicate this comb can readily support radial velocity measurements below 1 m/s in the near-IR.Comment: 16 pages, 12 figures, new file fixes some readability problems on Mac

    Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy

    Get PDF
    An important technique for discovering and characterizing planets beyond our solar system relies upon measurement of weak Doppler shifts in the spectra of host stars induced by the influence of orbiting planets. A recent advance has been the introduction of optical frequency combs as frequency references. Frequency combs produce a series of equally spaced reference frequencies and they offer extreme accuracy and spectral grasp that can potentially revolutionize exoplanet detection. Here we demonstrate a laser frequency comb using an alternate comb generation method based on electro-optical modulation, with the comb centre wavelength stabilized to a molecular or atomic reference. In contrast to mode-locked combs, the line spacing is readily resolvable using typical astronomical grating spectrographs. Built using commercial off-the-shelf components, the instrument is relatively simple and reliable. Proof of concept experiments operated at near-infrared wavelengths were carried out at the NASA Infrared Telescope Facility and the Keck-II telescope

    ROPS: A New Search for Habitable Earths in the Southern Sky

    Get PDF
    We present the first results from our Red Optical Planet Survey (ROPS) to search for low mass planets orbiting late type dwarfs (M5.5V - M9V) in their habitable zones (HZ). Our observations, with the red arm of the MIKE spectrograph (0.5 - 0.9 microns) at the 6.5 m Magellan Clay telescope at Las Campanas Observatory indicate that >= 92 per cent of the flux lies beyond 0.7 microns. We use a novel approach that is essentially a hybrid of the simultaneous iodine and ThAr methods for determining precision radial velocities. We apply least squares deconvolution to obtain a single high S/N ratio stellar line for each spectrum and cross correlate against the simultaneously observed telluric line profile, which we derive in the same way. Utilising the 0.62 - 0.90 micron region, we have achieved an r.m.s. precision of 10 m/s for an M5.5V spectral type star with spectral S/N ~160 on 5 minute timescales. By M8V spectral type, a precision of ~30 m/s at S/N = 25 is suggested, although more observations are needed. An assessment of our errors and scatter in the radial velocity points hints at the presence of stellar radial velocity variations. Of our sample of 7 stars, 2 show radial velocity signals at 6-sigma and 10-sigma of the cross correlation uncertainties. If the signals are planetary in origin, our findings are consistent with estimates of Neptune mass planets that predict a frequency of 13 - 27 per cent for early M dwarfs.Our current analysis indicates the we can achieve a sensitivity that is equivalent to the amplitude induced by a 6 M_Earth planet orbiting in the habitable zone. Based on simulations, we estimate that <10 M_Earth habitable zone planets will be detected in a new stellar mass regime, with <=20 epochs of observations.Comment: MNRAS accepted: 14 pages, 8 figures, 3 table

    Dual-comb spectroscopy with tailored spectral broadening in Si3N4 nanophotonics

    Get PDF
    Si N waveguides, pumped at 1550 nm, can provide spectrally smooth, broadband light for gas spectroscopy in the important 2 &mu;m to 2.5 &mu;m atmospheric water window, which is only partially accessible with silica-fiber based systems. By combining Er fiber frequency combs and supercontinuum generation in tailored Si N waveguides, high signal-to-noise dual-comb spectroscopy spanning 2 &mu;m to 2.5 &mu;m is demonstrated. Acquired broadband dual-comb spectra of CO and CO agree well with database line shape models and have a spectral-signal-to-noise as high as 48/&radic;s, showing that the high coherence between the two combs is retained in the Si N supercontinuum generation. The dual-comb spectroscopy figure of merit is 6 &times; 10 /&radic;s, equivalent to that of all-fiber dual-comb spectroscopy systems in the 1.6 &mu;m band. based on these results, future dual-comb spectroscopy can combine fiber comb technology with Si N waveguides to access new spectral windows in a robust non-laboratory platform.</p

    Open-path dual-comb spectroscopy of methane and VOC emissions from an unconventional oil well development in Northern Colorado

    Get PDF
    We present results from a field study monitoring methane and volatile organic compound emissions near an unconventional oil well development in Northern Colorado from September 2019 to May 2020 using a mid-infrared dual-comb spectrometer. This instrument allowed quantification of methane, ethane, and propane in a single measurement with high time resolution and integrated path sampling. Using ethane and propane as tracer gases for methane from oil and gas activity, we observed emissions during the drilling, hydraulic fracturing, millout, and flowback phases of well development. Large emissions were seen in drilling and millout phases and emissions decreased to background levels during the flowback phase. Ethane/methane and propane/methane ratios varied widely throughout the observations

    Wnt Signalling Pathway Parameters for Mammalian Cells

    Get PDF
    Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model

    A NOTE ON THE ORIGIN OF LIFE

    No full text

    STATISTICAL CORRELATION OF PROTEIN AND RIBONUCLEIC ACID COMPOSITION

    No full text
    • …
    corecore