141 research outputs found

    Detection of the interfacial exchange field at a ferromagnetic insulator-nonmagnetic metal interface with pure spin currents

    Full text link
    At the interface between a nonmagnetic metal (NM) and a ferromagnetic insulator (FI) spin current can interact with the magnetization, leading to a modulation of the spin current. The interfacial exchange field at these FI-NM interfaces can be probed by placing the interface in contact with the spin transport channel of a lateral spin valve (LSV) device and observing additional spin relaxation processes. We study interfacial exchange field in lateral spin valve devices where Cu spin transport channel is in proximity with ferromagnetic insulator EuS (EuS-LSV) and yttrium iron garnet Y3_3Fe5_5O12_{12} (YIG-LSV). The spin signals were compared with reference lateral spin valve devices fabricated on nonmagnetic Si/SiO2_2 substrate with MgO or AlOx_x capping. The nonlocal spin valve signal is about 4 and 6 times lower in the EuS-LSV and YIG-LSV, respectively. The suppression in the spin signal has been attributed to enhanced surface spin-flip probability at the Cu-EuS (or Cu-YIG) interface due to interfacial spin-orbit field. Besides spin signal suppression we also found widely observed low temperature peak in the spin signal at TT \sim30 K is shifted to higher temperature in the case of devices in contact with EuS or YIG. Temperature dependence of spin signal for different injector-detector distances reveal fluctuating exchange field at these interfaces cause additional spin decoherence which limit spin relaxation time in addition to conventional sources of spin relaxation. Our results show that temperature dependent measurement with pure spin current can be used to probe interfacial exchange field at the ferromagnetic insulator-nonmagnetic metal interface.Comment: 10 pages, 3 figures, accepted in Physical Review

    Spin-orbit-enhanced robustness of supercurrent in graphene/WS2Josephson junctions

    Get PDF
    We demonstrate the enhanced robustness of the supercurrent through graphene-based Josephson junctions in which strong spin-orbit interactions (SOIs) are induced. We compare the persistence of a supercurrent at high out-of-plane magnetic fields between Josephson junctions with graphene on hexagonal boron-nitride and graphene on WS2, where strong SOIs are induced via the proximity effect. We find that in the shortest junctions both systems display signatures of induced superconductivity, characterized by a suppressed differential resistance at a low current, in magnetic fields up to 1 T. In longer junctions, however, only graphene on WS2 exhibits induced superconductivity features in such high magnetic fields, and they even persist up to 7 T. We argue that these robust superconducting signatures arise from quasiballistic edge states stabilized by the strong SOIs induced in graphene by WS2

    Fast and effective mitochondrial delivery of omega-Rhodamine-B-polysulfobetaine-PEG copolymers

    Get PDF
    Mitochondrial targeting and entry, two crucial steps in fighting severe diseases resulting from mitochondria dysfunction, pose important challenges in current nanomedicine. Cell-penetrating peptides or targeting groups, such as Rhodamine-B (Rho), are known to localize in mitochondria, but little is known on how to enhance their effectiveness through structural properties of polymeric carriers. To address this issue, we prepared 8 copolymers of 3-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate and poly(ethyleneglycol) methacrylate, p(DMAPS-ran-PEGMA) (molecular weight, 18.0 <M-n <74.0 kg/mol) with two different endgroups. We labeled them with Rho groups attached along the chain or on one of the two endgroups (alpha or omega). From studies by flow cytometry and confocal fluorescence microscopy of the copolymers internalization in HeLa cells in the absence and presence of pharmacological inhibitors, we established that the polymers cross the cell membrane foremost by translocation and also by endocytosis, primarily clathrin-dependent endocytosis. The most effective mitochondrial entry was achieved by copolymers of M-n <30.0 kg/mol, lightly grafted with PEG chains (<5 mol %) labeled with Rho in the omega-position. Our findings may be generalized to the uptake and mitochondrial targeting of prodrugs and imaging agents with a similar polymeric scaffold.Peer reviewe

    In vitro bioactivity of titanium-doped bioglass

    Get PDF
    Previous studies have suggested that incorporating relatively small quantities of titanium dioxide into bioactive glasses may result in an increase in bioactivity and hydroxyapatite formation. The present work therefore investigated the in vitro bioactivity of a titanium doped bioglass and compared the results with 45S5 bioglass. Apatite formation was evaluated for bioglass and Ti-bioglass in the presence and absence of foetal calf serum. Scanning electron microscopy (SEM) images were used to evaluate the surface development and energy dispersive X-ray measurements provided information on the elemental ratios. X-ray diffraction spectra confirmed the presence of apatite formation. Cell viability was assessed for bone marrow stromal cells under direct and indirect contact conditions and cell adhesion was assessed using SEM

    Superconducting spintronics

    Get PDF
    The interaction between superconducting and spin-polarized orders has recently emerged as a major research field following a series of fundamental breakthroughs in charge transport in superconductor-ferromagnet heterodevices which promise new device functionality. Traditional studies which combine spintronics and superconductivity have mainly focused on the injection of spin-polarized quasiparticles into superconducting materials. However, a complete synergy between superconducting and magnetic orders turns out to be possible through the creation of spin-triplet Cooper pairs which are generated at carefully engineered superconductor interfaces with ferromagnetic materials. Currently, there is intense activity focused on identifying materials combinations which merge superconductivity and spintronics in order to enhance device functionality and performance. The results look promising: it has been shown, for example, that superconducting order can greatly enhance central effects in spintronics such as spin injection and magnetoresistance. Here, we review the experimental and theoretical advances in this field and provide an outlook for upcoming challenges related to the new concept of superconducting spintronics.J.L. was supported by the Research Council of Norway, Grants No. 205591 and 216700. J.W.A.R. was supported by the UK Royal Society and the Leverhulme Trust through an International Network Grant (IN-2013-033).This is the accepted manuscript. The final version is available at http://www.nature.com/nphys/journal/v11/n4/full/nphys3242.html

    <span style="font-size:21.0pt;mso-bidi-font-size:14.0pt; line-height:115%;font-family:"Times New Roman","serif";mso-fareast-font-family: "Times New Roman";mso-fareast-theme-font:minor-fareast;mso-ansi-language:EN-US; mso-fareast-language:EN-US;mso-bidi-language:AR-SA">Lattice dynamical studies of ternary superionic conductors Ag<sub><span style="font-size:16.0pt; mso-bidi-font-size:9.0pt;line-height:115%;font-family:"Times New Roman","serif"; mso-fareast-font-family:"Times New Roman";mso-fareast-theme-font:minor-fareast; mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language:AR-SA">3</span></sub><span style="font-size:21.0pt;mso-bidi-font-size:14.0pt;line-height:115%;font-family: "Times New Roman","serif";mso-fareast-font-family:"Times New Roman";mso-fareast-theme-font: minor-fareast;mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language: AR-SA">SX (X=1, Br)</span></span>

    No full text
    385-389<span style="font-size: 15.5pt;mso-bidi-font-size:8.5pt;font-family:" times="" new="" roman","serif""="">A de Launey angular force model has been applied to study the phonon dispersion in three symmetric directions of ternary superionic conductor Ag3SX (X =1, Br) by assuming them to be ideal perovskite type structure. A lattice dynamical calculation reasonably interprets the dominance of mobile ions in highest frequency mode. The short-range (fs) and longrange (fL) <span style="font-size:15.5pt;mso-bidi-font-size:8.5pt;font-family: " times="" new="" roman","serif""="">forces in Ag<span style="font-size:13.0pt; mso-bidi-font-size:6.0pt;font-family:" times="" new="" roman","serif""="">3SX (X <span style="font-size:19.5pt;mso-bidi-font-size:12.5pt;font-family: " times="" new="" roman","serif""="">=<span style="font-size:15.5pt;mso-bidi-font-size: 8.5pt;font-family:" times="" new="" roman","serif""="">I, Br) for a high frequency band are estimated near the transition temperature Tc and below 300 K. The fL <span style="font-size:15.5pt;mso-bidi-font-size:8.5pt;font-family: " times="" new="" roman","serif""="">values in both the conductors show an increase with T above Tc whereas the values of fs <span style="font-size:15.5pt;mso-bidi-font-size:8.5pt;font-family: " times="" new="" roman","serif""="">decrease with T. The temperature dependence of fL <span style="font-size:15.5pt;mso-bidi-font-size:8.5pt;font-family: " times="" new="" roman","serif""="">and fs <span style="font-size:15.5pt;mso-bidi-font-size:8.5pt;font-family: " times="" new="" roman","serif""="">are explained satisfactorily from this calculation. </span
    corecore