215 research outputs found

    The effects of dietary fibre type on satiety-related hormones and voluntary food intake in dogs

    Get PDF
    Depending on type and inclusion level, dietary fibre may increase and maintain satiety and postpone the onset of hunger. This 7-week study evaluated the effect of fibre fermentability on physiological satiety-related metabolites and voluntary food intake (VFI) in dogs. Sixteen healthy adult dogs were fed a low-fermentable fibre (LFF) diet containing 8·5 % cellulose or a high-fermentable fibre (HFF) diet containing 8·5 % sugarbeet pulp and 2 % inulin. Large intestinal fibre degradation was evaluated by apparent faecal digestibility of nutrients and faecal SCFA and NH3 concentrations. Postprandial blood samples were obtained to determine postprandial plasma glucose, insulin, total peptide tyrosine–tyrosine (PYY), total glucagon-like peptide-1 (GLP-1) and total ghrelin concentrations. At the end of the study, the dogs were given a single meal of a dry dog food to determine VFI. Dogs fed the HFF diet had a significantly higher large intestinal fibre degradation and production of SCFA compared with the dogs fed the LFF diet. The HFF-fed dogs tended (P = 0·058) to show a lower VFI at the end of the study. No treatment effects were found for postprandial plasma glucose, PYY, GLP-1 and ghrelin responses. The concentrations of these metabolites could not be related to the observed difference in VFI. The inclusion of fermentable fibre in canine diets may contribute to the prevention or mitigation of obesity through its effects on satiety. The underlying mechanisms require further investigatio

    Bacterial fecal microbiota is only minimally affected by a standardized weight loss plan in obese cats

    Get PDF
    Background: Research in humans and mice suggests that obesity influences the abundance and diversity of gastrointestinal (GI) microbiota, and that an "obese microbiome" influences energy metabolism and fat storage in the host. Microbiota membership and composition have been previously assessed in healthy cats. However, research investigating the effects of obesity and weight loss on the cat's fecal microbiota is limited. Therefore, this study's objective was to evaluate differences in fecal microbial abundance and biodiversity, as well as serum cobalamin and folate concentrations in obese cats, before and after weight loss, and compare to lean cats. Fourteen lean and 17 obese healthy client-owned cats were fed a veterinary therapeutic weight loss food at maintenance energy requirement for 4 weeks. At the end of week 4, lean cats finished the study, whereas obese cats continued with a 10-week weight loss period on the same food, fed at individually-tailored weight loss energy requirements. Body weight and body condition score were recorded every 2 weeks throughout the study. At the end of each period, a fecal sample and food-consumption records were obtained from the owners, and serum cobalamin and folate concentrations were analysed. DNA was extracted from fecal samples, polymerase chain reaction (PCR) was performed, and products were sequenced using next-generation sequencing (Illumina MiSeq). Results: No significant differences in the relative abundance of taxa and in biodiversity indices were observed between cats in either group (P > 0.05 for all tests). Nevertheless, some significantly enriched taxa, mainly belonging to Firmicutes, were noted in linear discriminant analysis effect size test in obese cats before weight loss compared to lean cats. Serum cobalamin concentrations were significantly higher in lean compared to obese cats both before and after weight loss. Serum folate concentrations were higher in obese cats before weight loss compared to after. Conclusions: The association between feline obesity and the fecal bacterial microbiota was demonstrated in enriched taxa in obese cats compared to lean cats, which may be related to enhanced efficiency of energy-harvesting. However, in obese cats, the fecal microbial abundance and biodiversity were only minimally affected during the early phase of a standardized weight loss plan

    Sticky/Citron kinase maintains proper RhoA localization at the cleavage site during cytokinesis

    Get PDF
    In many organisms, the small guanosine triphosphatase RhoA controls assembly and contraction of the actomyosin ring during cytokinesis by activating different effectors. Although the role of some RhoA effectors like formins and Rho kinase is reasonably understood, the functions of another putative effector, Citron kinase (CIT-K), are still debated. In this paper, we show that, contrary to previous models, the Drosophila melanogaster CIT-K orthologue Sticky (Sti) does not require interaction with RhoA to localize to the cleavage site. Instead, RhoA fails to form a compact ring in late cytokinesis after Sti depletion, and this function requires Sti kinase activity. Moreover, we found that the Sti Citron-Nik1 homology domain interacts with RhoA regardless of its status, indicating that Sti is not a canonical RhoA effector. Finally, Sti depletion caused an increase of phosphorylated myosin regulatory light chain at the cleavage site in late cytokinesis. We propose that Sti/CIT-K maintains correct RhoA localization at the cleavage site, which is necessary for proper RhoA activity and contractile ring dynamics

    A 10Gb/s burst-mode TIA with on-chip reset/lock CM signaling detection and limiting amplifier with a 75ns settling time

    Get PDF
    Emerging symmetric 10Gb/s passive optical network (PON) systems aim at high network transmission efficiency by reducing the RX settling time that is needed for RX amplitude recovery in burst-mode (BM). A conventional AC-coupled BM- RX has an inherent tradeoff between short settling time and decision threshold droop, which makes an RX settling time shorter than 400ns hard to achieve. Some techniques have been developed to overcome this limitation, demonstrating a settling time of 150 to 200ns. Our previous work uses feed-forward automatic offset compensation (AOC) to achieve a response time as short as 25.6ns. However, a feed-forward scheme using peak detectors is intrinsically less accurate and results in relatively high power consumption. In this paper, we present a DC-coupled 10Gb/s BM-TIA and burst-mode limiting amplifier (BM- LA) chipset that uses a feedback type AOC circuit with switchable loop BW. This new technique is capable of removing input DC offset in less than 75ns, and offers continuous decision threshold tracking during payload, to cope with the maximum length of CID. The differential TIA output port senses a CM reset signal provided by the succeeding BM-LA, and activates an on-chip reset and lock function. This BM-LA also integrates auto reset/activity generation circuits providing the AOC BW switching signal, so that this time-critical signal is not required from the PON system

    High-quality conforming hexahedral meshes of patient-specific abdominal aortic aneurysms including their intraluminal thrombi

    Get PDF
    In order to perform finite element (FE) analyses of patient-specific abdominal aortic aneurysms, geometries derived from medical images must be meshed with suitable elements. We propose a semi-automatic method for generating conforming hexahedral meshes directly from contours segmented from medical images. Magnetic resonance images are generated using a protocol developed to give the abdominal aorta high contrast against the surrounding soft tissue. These data allow us to distinguish between the different structures of interest. We build novel quadrilateral meshes for each surface of the sectioned geometry and generate conforming hexahedral meshes by combining the quadrilateral meshes. The three-layered morphology of both the arterial wall and thrombus is incorporated using parameters determined from experiments. We demonstrate the quality of our patient-specific meshes using the element Scaled Jacobian. The method efficiently generates high-quality elements suitable for FE analysis, even in the bifurcation region of the aorta into the iliac arteries. For example, hexahedral meshes of up to 125,000 elements are generated in less than 130 s, with 94.8 % of elements well suited for FE analysis. We provide novel input for simulations by independently meshing both the arterial wall and intraluminal thrombus of the aneurysm, and their respective layered morphologies

    New Approach for M-Cell-Specific Molecules Screening by Comprehensive Transcriptome Analysis

    Get PDF
    A minor population of M cells within the follicle-associated epithelium (FAE) of intestinal Peyer's patches (PPs) serves as a major portal for entry of exogenous antigens. Characterization of the mammalian M cells, including identification of M-cell surface molecules used for bacterial uptake, has been hampered by their relative rarity. In contrast, M cells constitute virtually all of the FAE cells in the avian bursa of Fabricius. We therefore performed comparative gene expression profiling of chicken and murine FAE to identify commonly expressed genes by M cells in both species. The comprehensive transcriptome analysis revealed that 28 genes were commonly up-regulated in FAE from both species. In situ hybridization revealed that annexin A10 (Anxa10) mRNA was scattered in FAE, and co-localized with Ulex europaeus agglutinin-1 binding to M cells. Whole-mount immunostaining also revealed that cellular prion protein (PrPC) was expressed on the luminal side of the apical plasma membrane of M cells, and co-localized with grycoprotein 2 that recognizes only M cells in murine PP. Our findings identify new M-cell-specific molecules through using comprehensive transcriptome analysis. These conserved molecules in M cells of mice and chickens may play essential roles in M-cell function and/or differentiation

    Sticky/Citron kinase maintains proper RhoA localization at the cleavage site during cytokinesis.

    Get PDF
    In many organisms, the small guanosine triphosphatase RhoA controls assembly and contraction of the actomyosin ring during cytokinesis by activating different effectors. Although the role of some RhoA effectors like formins and Rho kinase is reasonably understood, the functions of another putative effector, Citron kinase (CIT-K), are still debated. In this paper, we show that, contrary to previous models, the Drosophila melanogaster CIT-K orthologue Sticky (Sti) does not require interaction with RhoA to localize to the cleavage site. Instead, RhoA fails to form a compact ring in late cytokinesis after Sti depletion, and this function requires Sti kinase activity. Moreover, we found that the Sti Citron-Nik1 homology domain interacts with RhoA regardless of its status, indicating that Sti is not a canonical RhoA effector. Finally, Sti depletion caused an increase of phosphorylated myosin regulatory light chain at the cleavage site in late cytokinesis. We propose that Sti/CIT-K maintains correct RhoA localization at the cleavage site, which is necessary for proper RhoA activity and contractile ring dynamics

    Effects of Helicobacter suis γ-glutamyl transpeptidase on lymphocytes: modulation by glutamine and glutathione supplementation and outer membrane vesicles as a putative delivery route of the enzyme

    Get PDF
    Helicobacter (H.) suis colonizes the stomach of the majority of pigs as well as a minority of humans worldwide. Infection causes chronic inflammation in the stomach of the host, however without an effective clearance of the bacteria. Currently, no information is available about possible mechanisms H. suis utilizes to interfere with the host immune response. This study describes the effect on various lymphocytes of the γ-glutamyl transpeptidase (GGT) from H. suis. Compared to whole cell lysate from wild-type H. suis, lysate from a H. suis ggt mutant strain showed a decrease of the capacity to inhibit Jurkat T cell proliferation. Incubation of Jurkat T cells with recombinantly expressed H. suis GGT resulted in an impaired proliferation, and cell death was shown to be involved. A similar but more pronounced inhibitory effect was also seen on primary murine CD4+ T cells, CD8+ T cells, and CD19+ B cells. Supplementation with known GGT substrates was able to modulate the observed effects. Glutamine restored normal proliferation of the cells, whereas supplementation with reduced glutathione strengthened the H. suis GGT-mediated inhibition of proliferation. H. suis GGT treatment abolished secretion of IL-4 and IL-17 by CD4+ T cells, without affecting secretion of IFN-γ. Finally, H. suis outer membrane vesicles (OMV) were identified as a possible delivery route of H. suis GGT to lymphocytes residing in the deeper mucosal layers. Thus far, this study is the first to report that the effects on lymphocytes of this enzyme, not only important for H. suis metabolism but also for that of other Helicobacter species, depend on the degradation of two specific substrates: glutamine and reduced glutatione. This will provide new insights into the pathogenic mechanisms of H. suis infection in particular and infection with gastric helicobacters in general
    corecore