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Bacterial fecal microbiota is only minimally
affected by a standardized weight loss plan
in obese cats
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Abstract

Background: Research in humans and mice suggests that obesity influences the abundance and diversity of
gastrointestinal (GI) microbiota, and that an “obese microbiome” influences energy metabolism and fat storage in
the host. Microbiota membership and composition have been previously assessed in healthy cats. However,
research investigating the effects of obesity and weight loss on the cat’s fecal microbiota is limited. Therefore, this
study’s objective was to evaluate differences in fecal microbial abundance and biodiversity, as well as serum
cobalamin and folate concentrations in obese cats, before and after weight loss, and compare to lean cats.
Fourteen lean and 17 obese healthy client-owned cats were fed a veterinary therapeutic weight loss food at
maintenance energy requirement for 4 weeks. At the end of week 4, lean cats finished the study, whereas obese
cats continued with a 10-week weight loss period on the same food, fed at individually-tailored weight loss energy
requirements. Body weight and body condition score were recorded every 2 weeks throughout the study. At the
end of each period, a fecal sample and food-consumption records were obtained from the owners, and serum
cobalamin and folate concentrations were analysed. DNA was extracted from fecal samples, polymerase chain
reaction (PCR) was performed, and products were sequenced using next-generation sequencing (Illumina MiSeq).

Results: No significant differences in the relative abundance of taxa and in biodiversity indices were observed
between cats in either group (P > 0.05 for all tests). Nevertheless, some significantly enriched taxa, mainly belonging
to Firmicutes, were noted in linear discriminant analysis effect size test in obese cats before weight loss compared
to lean cats. Serum cobalamin concentrations were significantly higher in lean compared to obese cats both before
and after weight loss. Serum folate concentrations were higher in obese cats before weight loss compared to after.

Conclusions: The association between feline obesity and the fecal bacterial microbiota was demonstrated in
enriched taxa in obese cats compared to lean cats, which may be related to enhanced efficiency of energy-
harvesting. However, in obese cats, the fecal microbial abundance and biodiversity were only minimally affected
during the early phase of a standardized weight loss plan.
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Background
Obesity is a prominent problem in both humans and
companion animals. There are a few definitions for
obesity, but they are all in agreement that the term
reflects an excess of body fat that jeopardizes the indi-
vidual’s health [1–4]. Estimations from the last decade
indicate that in Europe, 11.5 and 26.8% of cats are over-
weight or obese in the UK and France respectively, while
59.5% of cats were reported as overweight of obese in
the USA and 63% in New Zealand [5–8].
Obesity is mainly caused by an imbalance between

energy intake and energy expenditure [9]. Additional
factors contribute to obesity, such as genetics, age, sex,
neutering, physical inactivity, and endocrine disease [7,
8, 10–12]. However, more recent findings indicate that
the gastrointestinal (GI) microbiota (i.e., the gastrointes-
tinal microbial community) plays an important role in
the development of obesity. The microbiota can be ad-
dressed as a “metabolic organ”, acting to support the
host with metabolic functions that the host is not cap-
able of performing, such as fermentation of plant poly-
saccharides [13–15]. The microbiota can also affect
metabolic pathways in the host, for example promote
metabolic pathways that enhance adipose tissue storage
[13, 16]. Moreover, the microbiota is also involved in
low-grade inflammation, which occurs with obesity. It is
suggested that lipopolysaccharide (LPS), a structural
component of the external membrane of gram-negative
bacteria, triggers inflammation in the host through the
innate immune response [17].
Increased relative abundance of Firmicutes versus Bac-

teroidetes, and hence a higher Firmicutes-to-Bacteroidetes
ratio were observed in obese humans and mice compared
to their lean counterparts [18, 19]. However, some studies
did not observe these differences [15]. Obesity was also as-
sociated with reduced microbial richness and diversity in
humans and mice [20, 21]. Nonetheless, little research ex-
ists in companion animals to demonstrate similar findings.
Research in dogs demonstrated increased relative abun-
dance of the phylum Actinobacteria and genus Roseburia
in lean versus obese dogs [22]. However, the subjects dif-
fered in their environment (i.e., lean research dogs and
obese pet dogs), and the dogs were not fed the same food
[22]. Limited research on the relationship between obesity
and the fecal microbiota has also been performed in cats.
One study examined the differences of the microbiota be-
tween lean and overweight/obese cats using two fecal col-
lection methods – rectal swabs versus litter box samples.
Microbiota differences were found between lean and
obese cats with both collection methods. However, shelter
cats were used, with the medical history being unknown,
and various different diets being consumed (i.e., no diet
adaptation period). Hence, the results may have been af-
fected by the diet or an unknown medical condition. Also

the effect of weight loss was not assessed [23]. A second
feline study examined the effect of weight loss on the
microbiota in eight obese kennel cats. However, the sam-
ple size was quite small, results were not compared to
matching lean kennel cats, and the study environment
was well controlled, and thus, less reflective of the true ef-
fects in the general cat population [24]. A third feline
study, examined the effects of body composition, 6 weeks
of energy restriction and neutering on the feline fecal mic-
tobiota of cats. Nonetheless, the weight loss period was
quite short, the sample size was small and the cats were
specific-pathogen-free kennel cats, so again not reflective
of the general pet cat population [25].
Obesity may impact intestinal permeability through

deviation from normal microbial structure (i.e., bac-
terial dysbiosis), which could cause an increase in
lipopolysaccharide (LPS)-producing bacteria and over-
all LPS production [26]. The direct assessment of in-
testinal permeability via tight junction protein
expression, for example, requires harvesting of intes-
tinal tissue [27]. However, measuring serum cobala-
min and folate can be used for non-invasive
assessment of intestinal health in humans, dogs, and
cats [28, 29]. Gastrointestinal bacterial dysbiosis can
be a cause of reduced serum concentrations of co-
balamin and may alter microbial folate synthesis [28].
Low serum cobalamin and/or folate status have been
observed in various obese human populations, for ex-
ample children and adolescents, post-menopausal
women and pre-operative bariatric surgery patients. It
is however uncertain if this is due to volumetric dilu-
tion of the blood of obese patients, low dietary intake,
reduced uptake by the intestinal epithelium, increased
catabolism, and sequestration in adipose tissue, or
changes in the gut microbiota profiles [30–33]. To
the authors’ knowledge, serum cobalamin and folate
concentrations have not been assessed in feline
obesity.
Therefore, the aim of the current study was to in-

vestigate the fecal microbiota and serum cobalamin
and folate concentrations in obese client-owned cats
before and after a 10-week standardized weight loss
plan and to compare these to a lean control group,
while all cats were acclimatized for 4 weeks to the
same diet before study enrollment. It was hypothe-
sized that the feline fecal microbial composition and
structure will differ between lean and obese cats and
that these microbial differences will revert with
weight loss in obese cats, to resemble the fecal micro-
biota of lean cats. It was also hypothesized that a re-
duced cobalamin concentration and increased folate
concentration will be observed in obese cats before
weight loss compared with lean cats and obese cats
after weight loss.
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Results
Fourteen lean and 17 obese cats were enrolled into
the study. One obese cat did not complete the study
due to reduced owner cooperation with food restric-
tion, which resulted in weight maintenance rather
than weight loss. Results from this cat were included
for the obese cats before weight loss (OBWL) time
point, but not for the obese cats after weight loss
(OAWL) time point. Only one stool sample and food
intake data were obtained for one cat because of its
fractious nature, leaving 13 cats for assessment of
body weight (BW) and body composition in the
LEAN group. All cats tolerated the food well, no cat
refused to eat the food, and none showed signs of
illness or maldigestion (mean food consumption ±
standard deviation (SD) within groups – LEAN:
215.2 ± 35.69 kcal, OBWL: 217.8 ± 24.33 kcal, OAWL:
134.6 ± 9.20 kcal).

Body weight and body composition measurements
Body weight remained stable in all cats during the 4-
week adaptation period. However, mean BW was signifi-
cantly lower in the LEAN versus the OBWL (P < 0.0001)
group. The 10-week weight loss plan was successful as
body weight was significantly lower for OAWL com-
pared to OBWL (P < 0.0001) measurements. On average
cats lost 0.94 ± 0.28% of their initial body weight per
week. Also, a significant decrease in body condition
score (BCS) between OBWL and OAWL was observed
(P = 0.001). Body mass index (BMI) and girth in LEAN
were significantly lower compared to OBWL (P <
0.0001), and were also significantly lower for OAWL
compared to OBWL (P < 0.0001). Altogether, BW, BCS,
BMI and girth were still significantly higher in the obese
cat group than in LEAN cats after the 10-week weight
loss plan (P < 0.0001 for BW, BCS and girth, and P <
0.0002 for BMI) (Table 1).

Serum Cobalamin and Folate concentrations
Serum cobalamin concentrations were higher in LEAN
cats compared to OBWL cats (P = 0.009) and were also
higher in the LEAN group compared to the OAWL
group (P = 0.021). No differences were observed in
serum concentrations of cobalamin between OBWL and
OAWL measurements. Serum folate concentrations
were significantly higher for OBWL compared to OAWL
(P = 0.003). No other differences were observed for
serum folate concentrations between groups or time
points (Table 2).

Fecal microbiota analyses
Fecal analyses resulted in a total of 9,193,399 sequences
that passed all filters, with a median of 105,984 se-
quences per sample (range: 22,314-557,519). A random

subsample of 22,314 sequences per sample was used for
sample normalization. One thousand forty-two oper-
ational taxonomic units (OTUs) were formed.

Relative abundance
Median relative bacterial abundance was examined
across all taxa between groups. After performing a
Benjamini-Hochberg adjustment, significant differences
between groups were no longer identified for any taxa
(Figs. 1 & 2, Table 3, P > 0.05). The most abundant phyla
in all groups were (in a descending order) Firmicutes,
Proteobacteria, Actinobacteria, and Bacteroidetes. The
most abundant genera in all groups were (in a descend-
ing order): Clostridium_XI, Megasphaera, Erysipelotri-
chaceae_incertae_sedis, Lachnospiraceae and blautia.

Alpha and beta diversity indices
There were no significant differences in alpha diversity
matrices between groups or time-points (all P > 0.05)
(Fig. 3). There were also no differences in community
membership (Classical Jaccard index: unifrac P = 0.17;
parsimony P > 0.05 for all comparisons) or population
structure (Yue & Clayton: unifrac P = 0.93; parsimony
P > 0.05 for all comparisons) between groups or time-
points.
No significant clustering per group was evident in a

dendogram of the Classical Jaccard index representing
the community membership of the fecal microbiota, and
there was a strong intra-cat relationship (Fig. 4). Princi-
pal coordinate analyses also demonstrated no apparent
clustering based on community membership (Fig. 5) or

Table 1 Body weight and body composition measurements in
lean and obese cats before and after weight loss

LEAN OBWL OAWL

Mean ± SD Mean ± SD Mean ± SD

BW (kg) 4.49 ± 0.22a,c 6.95 ± 1.32a,b 6.30 ± 1.13b,c

BMI (kg/m2) 41.58 ± 4.67a,c 60.45 ± 12.05a,b 55.61 ± 11.02b,c

Girth (cm) 38.38 ± 3.79a,c 52.12 ± 4.89a,b 48.25 ± 5.55b,c

Median (Min-Max) Median (Min-Max) Median (Min-Max)

BCS (1–9/9) 5 (4 to 5)a,c 9 (8 to 9)a,b 8 (6 to 9)b,c

OBWL obese before weight loss, OAWL obese after weight loss, BW body
weight, BMI body mass index, BCS body condition score, SD standard
deviation, Min minimum, Max maximum
The data presented here represent the BW and body composition
measurements of healthy lean cats (LEAN, n = 13) and obese cats following a
4-week adaptation period with a veterinary therapeutic food intended for
weight loss and adult maintenance (OBWL, n = 17), and obese cats after a 10-
week weight loss period on the same food (OAWL, n = 16)
aSignificant difference between LEAN to OBWL (P < 0.0001for BW, girth, BMI
and BCS); Student T-test (BW, BMI and girth) or Wilcoxon Mann-Whitney (BCS)
bSignificant difference between OBWL to OAWL (P < 0.0001 for BW, girth and
BMI; P = 0.001 for BCS); Paired T-test (BW, BMI and girth) or Wilcoxon
Signed-Rank (BCS)
cSignificant difference between LEAN to OAWL (P < 0.0001 for BW, girth, and
BCS; P < 0.0002 for BMI); Student T-test (BW, BMI and girth) or Wilcoxon
Mann-Whitney (BCS)
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structure between groups (analysis of molecular variance
(AMOVA) P > 0.05 and homogeneity of molecular vari-
ance (HOMOVA) P > 0.05 for all comparisons).

Linear discriminatory analysis effective size (LEfSe)
LEfSe analysis failed to identify enriched taxa between
the OBWL and OAWL time-points. However, a com-
parison of the LEAN to the OBWL group revealed 13
OTUs that were differentially enriched in the OBWL
group (Table 4), six of which are members of the
phylum Firmicutes, two that belong to the phylum Pro-
teobacteria and two to the phylum Actinobacteria. One
OTU of the phylum Tenericutes was found differentially

enriched in the LEAN group. When comparing LEAN
to the OAWL cats, the only difference was enrichment
of Pseudomonas (phylum Proteobacteria).

Discussion
Based on human and rodent studies, it was expected that
there would be differences of the fecal microbiota be-
tween lean and obese cats and that these microbial dif-
ferences would revert with weight loss in obese cats.
However, the bacterial fecal microbiota was only minim-
ally affected in the current study.
One study reported on a 50% decrease in the relative

abundance of Bacteroidetes in genetically-modified

Table 2 Serum cobalamin and folate concentrations in lean cats and in obese cats before and after weight loss

Analytes LEAN OBWL OAWL

Median (Min-Max) Median (Min-Max) Median (Min-Max)

Cobalamin (pg/mL) (350–1499 pg/mL)a 913 (821–973) b,d 882.0 (702–928) b 879.0 (571–974) d

Mean (LL-UL) Mean (LL-UL) Mean (LL-UL)

Folate (ng/mL) (9.7–21.6 ng/mL)a 18.8 (16.2–21.8) 20.1 (17.7–22.9) c 17.4 (15.3–19.9) c

OBWL obese before weight loss, OAWL, obese after weight loss, Min minimum, Max maximum, LL-UL lower limit – upper limit
The data presented here represent the cobalamin and folate serum concentrations of healthy lean cats (LEAN, n = 13) and obese cats following a 4-week
adaptation period with a veterinary therapeutic food intended for weight loss and adult maintenance (OBWL, n = 17), and obese cats after a 10-week weight loss
period on the same food (OAWL, n = 16)
aNormal reference-range provided by the Gastrointestinal Laboratory, Texas A&M University
bSignificant difference between LEAN to OBWL (and P = 0.0057 for cobalamin and P = 0.2989 for folate); Wilcoxon Mann-Whitney (cobalamin) or Student T-test
after log transformation (folate)
cSignificant difference between OBWL to OAWL (P = 0.8209 for cobalamin and P = 0.0321 for folate); Wilcoxon Signed Rank (cobalamin) or Paired T-test after log
transformation (folate)
dSignificant difference between LEAN to OAWL (P = 0.0149 for cobalamin and P = 0.6058 for folate); Wilcoxon Mann-Whitney (cobalamin) or Student T-test after
log transformation (folate)

Fig. 1 The relative abundances of predominant phyla originating from fecal samples of healthy lean cats (LEAN, n = 14) and obese cats (OBWL,
n = 17) following a 4-week adaptation period with a veterinary therapeutic food intended for weight loss and adult maintenance, and obese cats
after a 10-week weight loss period on the same food (OAWL, n = 16)
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obese mice compared to lean mice that were fed the
same high-polysaccharide diet. This change was also as-
sociated with a corresponding increase in Firmicutes and
reduced diversity [18]. Similar changes were subse-
quently identified in obese adult humans [19]. In
addition, weight loss, induced by using fat and
carbohydrate-restricted diets, was found to restore the
original ratio between Firmicutes to Bacteroidetes with
the restoration being correlated to the percentage of
weight loss [19]. More recent findings indicate that diet
composition rather than caloric intake, had the greatest
effect on the fecal microbiota of mice, when comparing
lean mice to obese mice after weight loss (i.e., two
groups of mice with similar weight and body compos-
ition) [34]. These findings corroborated other studies
that showed that dietary effects (especially fat content)
and initial body composition during weight reduction of
obese mice and humans were the main contributors to a
significant change in the fecal microbiota [35–37]. In
contrast to those previous findings, such a broad effect
was not noted in the current feline study as the relative
abundance of taxa and biodiversity indices were not dif-
ferent between lean and obese cats, and in obese cats be-
fore and after weight loss. This could relate to various
factors, such as differences between cats and other spe-
cies, environmental influence, the pathophysiology of
obesity in cats, the degree and duration of the initial
obese status, the nature of the weight loss intervention,
degree of cooperation of owners and the duration of the
study period. Although in the current study, the weight
loss period lasted only 10 weeks and the final fecal

sample was taken when weight loss was still occurring,
the food used was the same for all groups/periods, ex-
cluding diet as a confounder.
Despite the lack of broad taxonomic changes through

comparison of relative abundances, differences in the
microbiota were identified when comparing lean to
obese cats before weight loss. Six of the 13 OTUs that
were significantly enriched in obese cats before weight
loss belong to Firmicutes, a finding which is consistent
with the over-representation of certain Firmicutes mem-
bers in obese subjects in other species [18]. In humans
such an obesity-associated increase in Firmicutes was
thought to be related to an increased ability of energy
harvest and storage [18]. Additional research in
genetically-related obesity in humans, as well as in mice
fed a high-fat diet, was not able to correlate microbiota
composition and membership changes with energy-
harvest markers (i.e., short chain fatty acids (SCFA) and
energy content in feces). Therefore, it was suggested that
the changes observed indicated a potential microbial
adaptation to diet or obesity over time, and hence, a
more complex, and not completely understood, inter-
action between the microbiota and energy harvesting
[38]. In a recent feline study, the influence of neutering,
body composition, and 6 weeks of energy restriction on
fecal microbiota of cats, was assessed. All cats were
adapted to the study diet for 8 weeks before samples
were obtained. No major differences were observed be-
tween groups in regards to bacterial composition and
structure, however, a significant small difference in the
abundance of Firmicutes between the lean neutered

Fig. 2 The relative abundances of predominant genera originating from fecal samples of healthy lean cats (LEAN, n = 14) and obese cats (OBWL,
n = 17) following a 4-week adaptation period with a veterinary therapeutic food intended for weight loss and adult maintenance, and obese cats
after a 10-week weight loss period on the same food (OAWL, n = 16)
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Table 3 Relative abundances of the fecal microbiota members of healthy lean cats and obese cats before and after weight loss

Medians (Min-Max) of relative abundance (%)

LEAN OBWL OAWL

Phyla (9/9)a

Firmicutes 81.0 (63.7–91.0) 80.2 (5.3–93.4) 76.0 (46.3–92.1)

Proteobacteria 5.4 (1.9–23.2) 8.2 (2.9–19.0) 7.4 (1.2–43.0)

Actinobacteria 2.9 (0.8–32.8) 2.5 (0.4–30.1) 4.0 (0.5–13.6)

Bacteroidetes 1.9 (0.4–5.1) 2.1 (0.5–4.3) 2.0 (0.6–5.3)

Bacteria_unclassified 1.3 (0.5–10.4) 1.6 (0.3–3.7) 0.7 (0.0–3.4)

Verrucomicrobia 0.4 (0.1–7.3) 0.5 (0.1–2.5) 0.4 (0.0–7.8)

Fusobacteria 0.3 (0.0–1.5) 0.3 (0.0–5.7) 0.2 (0.0–3.5)

Spirochaetes 0.1 (0.0–3.7) 0.1 (0.0–1.2) 0.1 (0.0–2.13)

Fibrobacteres 0.0 (0.0–1.1) 0.0 (0.0–0.7) 0.0 (0.0–0.8)

Class (10/25)a

Clostridia 35.8 (13.1–59.3) 41.1 (20.1–70.9) 38.6 (17.8–68.0)

Negativicutes 15.4 (5.1–36.1) 9.0 (0.1–43.3) 14.6 (1.3–39.1)

Eryspelotrichia 16.8 (0.72–33.3) 10.6 (0.3–25.3) 7.7 (0.4–15.0)

Bacilli 8.2 (2.4–33.3) 9.8 (2.1–32.0) 6.2 (0.6–29.8)

Actinobacteria 2.9 (0.8–32.8) 2.5 (0.4–30.1) 4.0 (0.5–13.6)

Gammaproteobacteria 2.9 (0.8–17.0) 4.7 (1.0–16.0) 4.4 (0.1–35.8)

Bacteria_unclassified 1.3 (0.5–10.4) 1.6 (0.3–3.7) 1.7 (0.0–6.4)

Bacteroidia 1.5 (0.4–4.7) 1.6 (0.4–3.6) 1.5 (0.3–5.1)

Firmicutes_unclassified 0.4 (0.1–4.2) 0.4 (0.1–1.8) 0.5 (0.0–5.3)

Alphaproteobacteria 0.9 (0.4–4.0) 1.0 (0.4–3.4) 0.8 (0.0–3.6)

Order (15/56)a

Clostridiales 35.6 (12.9–59.3) 40.7 (20.1–70.9) 38.2 (17.7–68.0)

Selenomonadales 15.4 (5.1–36.1) 9.0 (0.1–43.3) 14.6 (1.3–39.1)

Erysipelotrichales 16.8 (0.7–33.3) 10.6 (0.3–25.3) 7.7 (0.4–15.0)

Lactobacillales 4.7 (1.2–15.3) 5.8 (1.2–14.8) 5.2 (0.3–14.3)

Bacillales 3.0 (0.7–17.9) 3.7 (0.9–17.1) 2.2 (0.2–17.3)

Bifidobacteriales 0.9 (0.4–29.0) 0.7 (0.1–24.9) 1.3 (0.2–11.9)

Coriobacteriales 1.1 (0.3–4.8) 1.3 (0.2–5.1) 1.4 (0.2–7.4)

Bacteria_unclassified 1.3 (0.5–10.4) 1.6 (0.3–3.7) 1.7 (0.0–6.4)

Bacteroidales 1.5 (0.38–4.7) 1.6 (0.4–3.6) 1.5 (0.3–5.1)

Aeromonadales 0.2 (0.0–9.4) 0.9 (0.0–6.9) 0.6 (0.0–32.0)

Enterobacteriales 0.5 (0.1–1.6) 0.7 (0.1–10.6) 0.7 (0.0–4.5)

Firmicutes_unclassified 0.4 (0.1–4.2) 0.4 (0.1–1.8) 0.5 (0.0–5.3)

Verrucomicrobiales 0.2 (0.1–1.6) 0.3 (0.1–0.9) 0.3 (0.0–7.5)

Campylobacterales 0.4 (0.0–10.5) 0.3 (0.0–3.1) 0.4 (0.0–3.6)

Xanthomonadales 0.3 (0.1–1.0) 0.4 (0.1–1.0) 0.4 (0.0–7.1)

Family (20/99)a

Peptostreptococcaceae 13.1 (4.1–32.5) 16.5 (0.6–53.0) 12.8 (0.3–50.7)

Veilloncellaceae 14.2 (4.5–36.1) 8.8 (0.1–40.8) 14.3 (0.4–39.1)

Erysipelotrichaceae 16.8 (0.7–33.3) 10.6 (0.3–25.3) 7.7 (0.4–15.0)

Lachnospiraceae 9.7 (2.7–23.1) 9.7 (6.2–23.2) 8.4 (3.8–17.0)

Ruminococcaceae 3.6 (1.2–13.1) 3.4 (1.2–9.7) 5.9 (0.7–11.6)
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Table 3 Relative abundances of the fecal microbiota members of healthy lean cats and obese cats before and after weight loss
(Continued)

Medians (Min-Max) of relative abundance (%)

LEAN OBWL OAWL

Bifidobacteriaceae 0.9 (0.4–29.0) 0.7 (0.1–24.9) 1.3 (0.2–11.9)

Clostridiales_unclassified 1.2 (0.4–3.4) 1.3 (0.2–4.4) 1.5 (0.5–11.1)

Clostridiaceae_1 0.3 (0.1–5.7) 0.6 (0.1–16.6) 1.4 (0.1–18.6)

Coriobacteriaceae 1.1 (0.3–4.8) 1.3 (0.2–5.1) 1.4 (0.2–7.4)

Enterococcaceae 1.9 (0.2–12.0) 2.3 (0.3–11.6) 1.5 (0.1–9.4)

Succinivibrionaceae 0.2 (0.0–9.3) 0.9 (0.0–6.8) 0.4 (0.0–32.0)

Planococcaceae 1.4 (0.3–8.0) 2.2 (0.6–8.3) 1.2 (0.1–8.3)

Lactobacillaceae 0.8 (0.0–6.3) 0.5 (0.1–11.2) 0.8 (0.1–4.6)

Enterobacteriaceae 0.5 (0.1–4.6) 0.7 (0.1–10.6) 0.7 (0.0–4.5)

Petptococcaceae_1 1.3 (0.0–3.5) 0.4 (0.0–5.3) 0.7 (0.0–4.1)

Firmicutes_unclassified 0.4 (0.1–4.2) 0.4 (0.1–1.8) 0.5 (0.0–5.3)

Bacteroidaceae 0.9 (0.2–2.7) 0.7 (0.2–3.1) 1.0 (0.1–2.8)

Acidaminococcaceae 0.7 (0.1–2.3) 0.3 (0.0–2.5) 0.2 (0.0–3.8)

Verrucomicrobiaceae 0.2 (0.1–1.6) 0.3 (0.0–7.5) 0.3 (0.1–0.9)

Genera (20/199)a

Clostridium_XI 12.3 (3.9–32.4) 15.5 (0.5–51.3) 12.5 (0.3–50.6)

Megasphaera 9.6 (0.0–35.4) 6.2 (0.0–32.6) 9.3 (0.0–38.8)

Erysipelotrichaceae_incertae_sedis 8.0 (0.4–33.0) 8.3 (0.1–18.4) 5.2 (0.2–12.7)

Lachnospiraceae 3.5 (1.1–7.0) 3.7 (1.9–7.6) 3.0 (1.6–8.6)

Blautia 3.5 (0.9–13.0) 4.1 (1.4–7.7) 2.7 (0.6–8.5)

Bifidobacterium 0.9 (0.4–29.0) 0.7 (0.1–24.9) 1.3 (0.2–11.9)

Megamonas 2.6 (0.0–11.7) 0.8 (0.0–15.4) 3.1 (0.0–18.4)

Clostridiales_unclassified 1.22 (0.4–9.4) 1.3 (0.2–4.4) 1.5 (0.5–11.1)

Ruminococcaceae 1.4 (0.4–6.8) 1.2 (0.3–3.8) 1.3 (0.4–5.5)

Bacteria_unclassified 1.3 (0.5–10.4) 1.6 (0.3–3.7) 1.7 (0.0–6.4)

Clostridium_sensu_stricto 0.2 (0.0–1.4) 0.2 (0.1–15.9) 0.6 (0.1–18.3)

Collinsella 0.8 (0.2–3.4) 0.9 (0.2–2.2) 0.9 (0.1–6.7)

Enterococcus 1.6 (0.2–10.7) 2.0 (0.3–10.4) 1.4 (0.1–8.4)

Erysipelotrichaceae 3.0 (0.0–6.7) 0.2 (0.0–4.9) 0.3 (0.0–5.0)

Faecalibacterium 0.8 (0.0–2.4) 0.7 (0.1–3.6) 0.8 (0.0–7.0)

Anaerobiospirillum 0.0 (0.0–8.5) 0.0 (0.0–6.8) 0.1 (0.0–31.9)

Lactobacillus 0.7 (0.0–6.1) 0.5 (0.1–10.6) 0.7 (0.1–4.4)

Planococcaceae 1.3 (0.0–3.5) 0.4 (0.0–5.3) 0.7 (0.0–4.1)

Firmicutes_unclassified 0.4 (0.1–4.2) 0.4 (0.1–1) 0.5 (0.0–5.3)

Lachnospiraceae_incertae_sedis 0.9 (0.3–2.6) 1.1 (0.2–2.7) 1.0 (0.1–2.5)

LEAN lean cats, OBWL obese cats before weight loss, OAWL obese cats after weight loss
The relative abundances across taxa presented here represent the fecal microbiota of healthy lean cats (LEAN, n = 14) and obese cats (OBWL, n = 17) following a
4-week adaptation period with a veterinary therapeutic food intended for weight loss and adult maintenance, and obese cats after a 10-week weight loss period
on the same food (OAWL, n = 16). Cut-off for phyla and genera in the study were 1 and 0.1%, respectively. However, only a portion of the most abundant
members for all taxa (besides to phyla) are presented in the table. No significant differences were found between groups, using Wilcoxon Rank Sum and Wilcoxon
Signed-Rank, depending on the groups’ comparison, followed by the Benjamini-Hochberg adjustment (P > 0.05 for all comparisons; not shown in the table)
a The numbers after each taxa represent the number of members in the specific taxa presented in the table out of the overall number of members in that taxa
retrieved by the analyses
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group to the obese group before energy restriction was
observed, and unlike the common literature and the
current study, they observed increased Firmicutes abun-
dance in the lean neutered cats [25]. The authors of the
mentioned study interpreted these finding as supportive
to the idea that alterations in abundance at lower taxo-
nomic level, such as genus, may have more impact and
health effects compared with alterations in abundance at

higher taxonomic level (e.g. phylum) [25]. The authors
of the current study concur with this notion, despite the
difference in findings.
In the current study, Planococcaceae incertae sedis, a

taxa that belongs to the Planococcaceae family, was
found to be enriched in obese cats before weight loss
compared to lean cats. Two unclassified members from
this family were also found to be enriched in pigs that

Fig. 3 Bacterial population evenness (Shannoneven), diversity (Invsimpson), and richness (Chao1) in healthy lean cats (LEAN, n = 14) and obese
cats (OBWL, n = 17) following a 4-week adaptation period with a veterinary therapeutic food intended for weight loss and adult maintenance,
and obese cats after a 10-week weight loss period on the same food (OAWL, n = 16)

Fig. 4 Dendogram of the Classical Jaccard index representing the community membership of the fecal microbiota in healthy lean cats (LEAN,
n = 14) and obese cats (OBWL, n = 17) following a 4-week adaptation period with a veterinary therapeutic food intended for weight loss and
adult maintenance, and obese cats after a 10-week weight loss period on the same food (OAWL, n = 16). Each group is represented with a
different colour (see legend)
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had a higher residual feed intake, meaning, they were
more efficient in energy harvesting [38]. In obese twins,
a lower proportion of Bacteroidetes versus Actinobac-
teria was found, although the abundance of Firmicutes
was not different. The same study identified obesity-
related genes from the microbiome and found that 75%
of the enriched obesity-related genes in obese twins orig-
inated from Actinobacteria, whereas the residual 25%
originated from Firmicutes. Many of these genes’ func-
tions are related to carbohydrate, amino-acid or lipid
metabolism [37]. In the current study, Firmicutes, as
well as Actinobacteria, were enriched in obese cats be-
fore weight loss compared to lean cats. In humans,
obesity-specific Prevotellaceae, which belongs to the
phylum Bacteroidetes, as well as some families that be-
long to the phylum Proteobacteria were enriched in
morbidly obese individuals compared to individuals who
went through gastric bypass or had a normal weight. En-
richment of Prevotellaceae and Proteobacteria was also
demonstrated in obese cats before weight loss compared
to lean cats enrolled in the current study. The Prevotel-
laceae family has members that facilitate protein and
carbohydrate fermentation, as well as acetate, H2 and
folate producers – hence, may have implications on en-
ergy metabolism and intestinal health [39, 40]. At last, in
contrast to the current study, Verrucomicrobia was
more abundant in individuals with a normal body weight
or in individuals who had gastric bypass surgery, rather

than in obese people [40]. Nonetheless, further under-
standing of the interaction between obesity and micro-
bial features in the different species requires
metagenomics research to further explore the obesity-
related metabolic pathways and functional potential of
the microbiome.
In addition, interesting complementary findings were

observed when examining the effect of feline obesity and
weight loss on serum cobalamin and folate concentra-
tions. Serum cobalamin concentrations were lower in
obese cats both before and after weight loss when com-
pared to lean cats. Also, serum folate concentrations
were higher in obese cats before weight loss compared
to after weight loss. Both, serum cobalamin and folate
concentrations, were within the laboratory’s reference
interval in all cats, although for folate, concentrations
were on the high end of the reference interval for obese
cats after weight loss. A correlation between BW and
serum cobalamin concentrations could not be demon-
strated in a previous feline study [41], while in humans
obesity is associated with a risk for cobalamin deficiency
[42]. One of the suggested reasons for obesity-associated
cobalamin deficiency is the diet consumed by obese
humans, which is commonly richer in carbohydrates and
fat, and lower in animal-derived protein, i.e., a diet lower
in cobalamin [43]. Still, low cobalamin intake was not
expected in the current study. First, as strict carnivores,
cats consume a diet high in animal-derived protein and
therefore also in cobalamin. Second, the cats were fed a
complete and balanced diet formulated for adult main-
tenance and intended for weight loss, meaning that pro-
tein and micronutrient content were enhanced to
compensate for reduced energy intake. Hence, it is pos-
sible that no true cobalamin deficiency was observed
due to the consumption of a cobalamin-enriched diet.
Serum cobalamin and folate concentrations are indica-

tors for gastrointestinal disease in humans [44]. In cats
and dogs, a similar association has been suggested due
to the positive therapeutic outcome of intestinal disease
when cobalamin concentrations are replenished [28, 29].
In general, both cobalamin and folate are affected by in-
testinal health and more specifically intestinal absorptive
capacity of various segments of the small intestine (i.e.,
folate in the proximal small intestine and cobalamin in
the ileum) [26, 28, 29]. Considering an association be-
tween serum cobalamin and folate and intestinal health
and absorption, the current findings, whilst still being
within the normal reference interval, may suggest better
intestinal properties in lean compared to obese cats and
improvement of intestinal health with weight loss.
The presence of enriched taxa in obese cats prior

to weight loss, compared to lean cats, as well as the
failure to identify such differences in enriched taxa
between obese cats before and after weight loss, may

Fig. 5 Three dimensional principal coordinate analysis of population
membership of the fecal microbiota of healthy lean cats (LEAN, n =
14) and obese cats (OBWL, n = 17) following a 4-week adaptation
period with a veterinary therapeutic food intended for weight loss
and adult maintenance, and obese cats after a 10-week weight loss
period on the same food (OAWL, n = 16). Each group is represented
with a different colour (see legend)
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strengthen the findings that body composition and %
weight loss, while excluding diet as a confounder,
are the main drivers of changes in the fecal micro-
biota [34–37]. Although BW and BCS significantly
decreased with energy restriction, the weight loss ob-
served may not have been sufficient to cause signifi-
cant changes in the biodiversity indices, relative
abundance or LEfSe analysis in obese cat over the
course of the weight loss plan. Still, fewer differences
in enriched taxa were observed when comparing
obese cats after weight loss to the lean cats. This
might mean that with weight loss, the microbial
population membership and composition are chan-
ging slowly, yet a 10-week weight loss period might
not be long enough to completely revert the obesity-
related differences in enriched taxa to a lean body
condition.
Challenges occurred with fecal collection during the

current study. The owners were advised to maintain
the fecal samples at 4 °C until transfer to the clinic,
yet, some owners kept them at ambient temperature.
In a study by Weese and Jalali (2014), no changes in
microbial membership and composition were observed
during 7 day storage at 4 °C [45]. Likewise, a recent
study investigated the effects of storage of fecal sam-
ples at ambient temperature on the feline fecal micro-
biota and confirmed the validity of using feline fecal
samples that were kept at an ambient temperature for
up to 4 days for microbiota-related analyses [46].

Therefore, despite the mentioned challenges, the au-
thors did not expect fecal samples storage conditions
to affect the results of the microbial-related analyses.
In the current study, aside to the relatively short

weight loss period that was not sufficient for obese
cats to reach their ideal body weight, the sample size
was relatively small for all groups, and can be consid-
ered a limitation. However, since a similar study had
not previously been conducted in client-owned cats,
the samples size was aligned with other feline studies,
investigating the effects of GI inflammatory conditions
on the microbial population [47, 48]. Nevertheless, it
is possible that with a larger sample size, and a lon-
ger period of caloric restriction would promote
greater weight loss as well as more distinct and con-
sistent changes in the fecal microbiota than were
identified in the current study here.

Conclusions
Enriched taxa in LEfSe analysis were observed especially
when comparing obese cats before and after weight loss.
Nearly half of the enriched taxa in the obese group
belonged to Firmicutes, which concurs with previous re-
ports in humans and mice. This may be related to better
energy-harvesting abilities of the host. However, a meta-
genomic approach is warranted to explore the functional
potential of the feline obese fecal microbiome. The
current study also demonstrated minimal effects of a 10-
week standardized and successful weight loss plan on

Table 4 Significantly enriched operational taxonomic units (OTUs) of the fecal microbiota of lean cats and obese cats before and
after weight loss

Comparison Significantly enriched OTUs

LEAN OBWL OAWL

LEAN vs. OBWL Tenericutes
Anaeroplasma

Firmicutes
Unclassified Clostridiales
(5 OTUs)
Planococcaceae_incertae_sedis
TM7
TM7_genus_incertae_Sedis
Actinobacteria
Arthrobacter
Nocardioides
Bacteroidetes
Unclassified
Prevotellaceae
Verrucomicrobia
Unclassified
Verrucomicrobiaceae
Proteobacteria
Oligella
Unclassified
Proteobacteria

LEAN vs. OAWL Proteobacteria
Pseudomonas

OTUs operational taxonomic units, LEAN lean cats, OBWL obese cats before weight loss, OAWL obese cats after weight loss
The OTUs represented here are from the fecal microbiota of healthy lean cats (LEAN, n = 14) and obese cats (OBWL, n = 17) following a 4-week adaptation period
with a veterinary therapeutic food intended for weight loss and adult maintenance, and obese cats after a 10-week weight loss period on the same food (OAWL,
n = 16). The presented OTUs have a linear discriminant analysis score > 2, and are organized in a descending manner

Tal et al. BMC Veterinary Research          (2020) 16:112 Page 10 of 15



microbial biodiversity, while excluding diet as a con-
founder. This may imply that sudden short-term energy
restriction is not enough to revert microbial changes in
the intestines.
Moreover, assessment of serum cobalamin and folate,

although all concentrations were within the reference
interval, potentially suggest improved intestinal health in
lean compared to obese cats, which could be achieved
with weight loss in obese cats. Nevertheless, more re-
search is warranted allowing for a longer weight loss
period and a larger sample size.

Methods
Experimental design
Fourteen lean (BCS 4–5/9, 10 males and 4 females) and
17 obese (BCS ≥ 8/9, 11 males and 6 females) cats were
enrolled into the study [49]. All cats were client-owned
animals from the Guelph, Ontario region, who live
indoors, were neutered and between 2 and 9 years of
age. All cats were assessed to be healthy, apart from
obesity, based on physical examination and medical his-
tory provided by the cat’s owner, as well as complete
blood count (CBC) and serum biochemistry profile.
There was no history of antimicrobial or anti-
inflammatory medications administered in the 90 day
period before commencing study enrolment. The study
took place between May 2015 and December 2016.

Adaptation period
At the time of enrolment, BW, BCS and muscle condi-
tion score (MCS) [49, 50] were documented. Next, all
cats underwent a one-week transition period to a veter-
inary therapeutic food (Hill’s Prescription Diets Meta-
bolic Feline dry, Hill’s Pet Nutrition, Topeka, Kansas,
USA) intended for weight loss and adult maintenance
(Table 5), followed by a 4-week adaptation period during
which all cats received the study food for 100% of their
daily ration. Individual maintenance energy require-
ments (ER) for both lean cats (LEAN) and OBWL were
calculated in accordance with the National Research
Council (NRC) (LEAN: 100 Kcal/kg0.67; OBWL: 130
Kcal/kg0.4) based on ideal body weights [51]. The owners
recorded the daily food intake of each cat. Three weeks
following study enrolment, body weight was assessed,
and the amount of food offered was adjusted, aiming to
maintain a stable body weight. At the end of the adapta-
tion period (week 5) BW, BCS and MCS were recorded.
Body condition score was once again evaluated using a
9-point scale, previously validated for cats [49]. Muscle
condition score was assessed using a 4-point scale,
which was previously described and validated for cats
[52]. Also, BMI and girth were assessed in all cats at that
time. Body mass index was calculated according to a
previous study [53] and girth was measured right behind

the last rib [54]. The same investigator (MT) conducted
all measurements throughout the study to reduce vari-
ability. A blood sample was drawn from the jugular or
cephalic vein for analysis of serum cobalamin and folate
concentration. Fecal samples were collected by the
owners and were obtained by the study personnel within
24 h after defecation and frozen at − 80 °C until further
analysis. The lean cats completed the study at week 5,
while the obese cats continued with a 10-week weight
loss plan.

Weight loss period
At week 5, the individual ER for weight loss were calcu-
lated for the obese cats in accordance with NRC recom-
mendations (0.6 × 130 Kcal/kg0.4), based on ideal body
weight. The weight loss period continued for 10 weeks.
During this period, food intake was recorded daily by
the owners and BW, BCS and MCS were assessed every
other week to monitor for effective and safe weight loss
(with a target BW loss of 0.5 to 2% of the initial BW per
week [9, 55]), as well as to monitor maintenance of lean
body mass. If the weekly weight loss rate was below 0.5%
or exceeded 2% of the initial BW, individual ER adjust-
ments were made – lowering or increasing the ER ini-
tially by 5%, respectively [12]. After 10 weeks, assessment

Table 5 Proximate and total dietary fibre analyses of the
veterinary therapeutic food fed in this studya

Units Contentb

Moisture g/100 g 5.5

CF (by acid hydrolysis) (DM) g/100 g 13.0

CP (DM) g/100 g 38.6

NFE (DM)c g/100 g 36.3

Cf (Cf) (DM) g/100 g 6.3

Total dietary fibre (DM) g/100 g 18.5

CA (DM) g/100 g 5.8

Energy density (DM)d kcal/100 g 372.7

CF crude fat, CP crude protein, NFE nitrogen-free extract, Cf crude fibre, DM
dry matter, CA crude ash
The food was fed as the only food source to lean cats (LEAN, n = 14) for adult
maintenance for 4 weeks and to obese cats for adult maintenance for 4 weeks
(OBWL, n = 17), followed by a 10-week weight loss period (OAWL, n = 16)
aHill’s Prescription Diets Metabolic Feline (dry), which contained chicken by-
product meal, brewers rice, corn, gluten meal, powdered cellulose, dried
tomato, pomace, flaxseed, dried beet pulp, chicken liver flavor, coconut oil,
pork fat, lactic acid, potassium chloride, calcium sulfate, L-lysine, choline
chloride, carrots, DL-methionine, vitamins (vitamin E supplement, L-ascorbyl-2-
polyphosphate (source of vitamin C), niacin supplement, thiamine
mononitrate, calcium pantothenate, pyridoxine hydrochloride, vitamin A
supplement, riboflavin supplement, biotin, vitamin B12 supplement, folic acid,
vitamin D3 supplement), taurine, L-carnitine, minerals (manganese sulfate,
ferrous sulfate, zinc oxide, copper sulfate, calcium iodate, sodium selenite),
mixed tocopherols for freshness, natural flavors, β-carotene
bNutrient content refers to an average of two consecutive laboratory analyses
from the same bag, which were performed by Maxxam Analytics International
Corporation, Mississauga, Ontario, Canada;
cCalculated using the equation: NFE (g/100 g) = 100 – (CP + CF + Cf + CA) [51]
dCalculated using the equation: Energy density
(kcal/100 g) = (CF × 8.5) + (CP × 3.5) + (NFE × 3.5) [51]
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of BMI and girth were repeated. At that time, additional
blood samples were collected, food logs obtained from
the owners. Fecal samples were also collected by the
owners for the obese cats after weight loss (OAWL) and
fecal samples were stored as described above.

Laboratory analyses of blood samples
Blood was collected at the end of the adaptation period
(LEAN and OBWL) and at the end of the weight loss
period (OAWL) for analyses of serum concentrations of
cobalamin and folate was refrigerated at 4 °C for 2 h and
then centrifuged at 3000 rpm for 10min (Sorvall Legend
RT Centrifuge. Fisher Scientific, Ottawa, Canda). The
serum retrieved was aliquoted and frozen at − 80 °C.
Frozen serum samples were batched from both the lean
and obese groups, and were analyzed together. Serum
concentrations of cobalamin and folate were analyzed at
the Gastrointestinal Laboratory, Texas A&M University,
using a chemiluminescent enzyme immunoassay (Immu-
lite 2000 Immunoassay System. Siemens Healthcare Sys-
tems GmbH, Erlangen, Germany) involving an
automated alkaline denaturation procedure.

Sample preparation and DNA extraction
All fecal samples, collected at the end of the adaptation
period (LEAN and OBWL) and at the end of the weight
loss period (OAWL), were analysed simultaneously.
Whole fecal samples were thawed overnight in their ori-
ginal container in a refrigerator (+ 4 °C), manually homog-
enized in a biosafety cabinet (Class II, Type A2 Biosafety
Cabinet, Thermo Fisher Scientific, Waltham, Massachu-
setts, USA) and aliquoted into 200mg samples.
DNA extraction was conducted using a commercial

stool extraction kit (E.Z.N.A. Stool DNA Kit, Omega
Bio-Tek Inc., Doraville, Georgia, USA) in accordance
with the manufacturer’s instructions. Extracted DNA
samples were stored at − 80 °C until further analysis.

Polymerase chain reaction (PCR)
A spectrophotometer (NanaDrop 1000 Spectrophotom-
eter, Nano Drop Technologies Inc. (Thermo Fisher Scien-
tific), Waltham, Massachusetts, USA) was used to assess
the quantity of extracted DNA. All DNA samples were di-
luted (if needed) to a range of 30 to 100 ng/ml. The V4 re-
gion of the 16S rRNA gene was amplified using a PCR
with the forward primer: S-D-Bact-0564-a-S-15 (5′-
AYTGGGYDTAAAGNG-3′), reverse: S-D-Bact-0785-b-
A-18 (5′-TACNVGGGTATCTAATCC-3′) [56], KAPA
HiFi ReadyMix (Kapa Biosystems, Wilmington, Massachu-
setts, USA), and PCR grade water. The PCR products were
purified with Agencourt AMPure XP (Beckman Coulter
Inc., Mississauga, ON, Canada). In order to prepare the
PCR products for Illumina MiSEq (Illumina, San Diego,
California, USA) sequencing, the purified PCR products

were amplified by PCR with Illumina adapters (Mastercy-
cler Pro, Eppendorf Canada Ltd., Mississauga, Ontario,
Canada) and then once again purified. Prior to Illumina
sequencing, the finalized PCR products were evaluated
using gel electrophoresis and DNA was measured using
spectrophotometry.

DNA sequencing
Bridge amplification was performed with an Illumina
MiSeq system (Illumina, San Diego, California, USA),
using terminator nucleotides that were incorporated into
the amplified PCR products with the removal of the ter-
minator group [57].

Bioinformatics and statistical analyses
Following DNA sequencing of fecal samples, Mothur
v1.36.1 was used for sequence processing [58, 59]. As-
sembly of paired end reads was performed using the
make.contigs command. This command extracts the se-
quence and creates its reverse compliment and joins the
reads into contigs. Next, filtration was conducted using
several screen.seqs commands to remove sequences
greater than 250 bp in length and those with any am-
biguous base calls or runs of homopolymers greater than
8 bp. Alignment of sequences to the Silva v128 16S
rRNA reference database [60] was implemented, with
the removal of sequences that did not align with the cor-
rect region. Uchime was conducted using the same Silva
reference database to identify chimeras [61], which were
then removed. Archaea were removed as well using the
remove. Lineage command. A closed OTU picking ap-
proach was then used. Ribosomal Database Project
(RDP) classifier (v14) was used for taxonomic assign-
ment of sequences [62], and the reference database used
was v11.4. In order to standardize sequence numbers
used for analysis, subsampling was completed based on
the smallest number of sequences from a sample [63].
Further statistical analyses were performed using JMP

13.0 (SAS Campus Drive, Cary, North Carolina, USA).
Normality of data distribution was assessed using the
Shapiro-Wilk test. Evenness, diversity and richness were
calculated using Shannon diversity [64], Simpson diversity
[65] and Chao [66] respectively, and a nonparametric mul-
tiple comparison test (Wilcoxon Rank Sum) was used to
compare between the groups and time points (LEAN,
OBWL and OAWL). Relative abundances were calculated
for the different taxonomic levels, for each group. The
relative abundance threshold for phyla was above 1% and
above 0.1% for the rest of the taxa levels. Differences were
evaluated using nonparametric multiple comparison test
(Wilcoxon Rank Sum for comparisons between groups:
LEAN to OBWL and LEAN to OAWL; Wilcoxon Signed-
Rank for the comparison between time points: OBWL to
OAWL), with p-values adjusted using the Benjamini-
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Hochberg correction (SAS Campus Drive, Cary, North
Carolina, USA; R. Core Team, 2013, R Foundation for
Statistical Computing, Vienna, Austria) to control for false
discovery [67]. Relative abundances are presented as me-
dian with range (minimum to maximum). The classical
Jaccard index [68] and Yue & Clayton index of dissimilar-
ity [69] (beta-diversity indexes) were calculated to examine
community membership and population structure, re-
spectively. To reflect the differences in membership and
structure between the groups, dendrograms were gener-
ated, and significance of clustering according to group was
determined using parsimony and unweighted unifrac tests
[70]. Beta-diversity indices were also visualized using prin-
cipal coordinate analyses (PCoA), with further comparison
of groups by AMOVA and HOMOVA. In order to iden-
tify difference in taxa between all groups, linear discrimin-
atory analysis (LDA) effective size (LefSe) [71] was
conducted.
Statistical analyses for body weight, body composition

measurements and serum cobalamin and folate concen-
trations were performed using SAS v9.3 (SAS Campus
Drive, Cary, North Carolina, USA). Normality of the
data was assessed using the Shapiro-Wilk test. Data that
did not distribute normally were logged, and if the distri-
bution was still not normal, then non-parametric tests
were performed. Differences in BW, BCS, BMI and girth
measurements, as well as serum cobalamin and folate
concentrations between LEAN to OBWL and OAWL
groups were compared using a student T-test/paired T-
test or the corresponding Wilcoxon-Mann-Whitney/
Wilcoxon Signed-Rank, depending on normality and on
whether the samples were paired. Significance was set at
P < 0.05 for all comparisons. Normally distributed data
are expressed as mean SD (BW, BMI, girth measure-
ments) or as mean of the back transformed values (lower
limit (LL)-upper limit (UL)) (folate). Data that did not
have a normal distribution are presented as median with
range (minimum to maximum) (cobalamin, BCS).

Abbreviations
GI: Gastrointestinal; PCR: Polymerase chain reaction; LPS: Lipopolysaccharide;
OBWL: Obese cats before weight loss; OAWL: Obese cats after weight loss;
BW: Body weight; SD: Standard deviation; BCS: Body condition score;
BMI: Body mass index; OUT: Operational taxonomic unit; LEfSe: Linear
discriminatory analysis effective size; SCFA: Short chain fatty acids;
CBC: Complete blood count; MCS: Muscle condition score; ER: Energy
requirements; RDP: Ribosomal Database Project; PCoA: Principal coordinate
analyses; HOMOVA: Homogeneity of molecular variance; AMOVA: Analysis of
molecular variance; LDA: Linear discriminatory analysis; LL: Lower limit;
UL: Upper limit

Acknowledgements
We wish to thank cat owners and their cats for participating in the study, as
well as many undergraduate volunteers, graduate students, and technicians
that helped with sample collection. We also wish to thank Charlotte Chau
and Bianca Di Sabatino for assisting with sample analyses, Joyce Rousseau
for her technical assistance with the laboratory work, Maisie McDowell for
assistance with electronic artwork and Allison Lull for manuscript formatting.

This research was previously presented at the 18th Annual AAVN Clinical
Nutrition and Research Symposium June 13, 2018, Seattle, WA, USA. (https://
doi.org/10.1111/jpn.13043).

Authors’ contributions
Designed the experiment: AV, JSW, MH, and MT. Performed the experiment:
MT. Supervised serum folate and cobalamin analyses: JMS. Analysed the data:
MT, DEG, and JSW. Drafted the manuscript: MT. All authors contributed to
manuscript preparation and approved the final manuscript.

Authors’ information
The study is within the scope of the graduate studies, Doctor Veterinary
Science (DVSc) degree, of MT, who received a DVSc scholarship from the
Ontario Veterinary College, University of Guelph.

Funding
The research was supported by Hill’s Pet Nutrition Inc. and by a Natural
Sciences Engineering Research Council of Canada, Discovery Grant. The
funders had no role in the design of the study or in the collection, analysis
and interpretation data or in writing the manuscript. Hill’s Pet Nutrition Inc.
reviewed and approved the manuscript before submission for publication.

Availability of data and materials
The dataset generated and/or analysed during the current project is
available at the Scholars Portal Dataverse server (https://dataverse.
scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP/9VAK4K).

Ethics approval and consent to participate
The study was conducted at the Ontario Veterinary College, University of
Guelph. The experimental design was approved by the University of Guelph
Animal Care Committee (Animal Utilization Protocol #2496), and prior to
study enrolment, cat owners signed informed consent forms for their cat’s
participation.

Consent for publication
Not applicable.

Competing interests
All authors declare no conflict of interest. A.V. is the Royal Canin Veterinary
Diets Endowed Chair in Canine and Feline Clinical Nutrition at the Ontario
Veterinary College.

Author details
1Department of Clinical Studies, Ontario Veterinary College, University of
Guelph, Guelph, ON N1G 2W1, Canada. 2Present address: Royal Canin
Canada, 100 Beiber Rd, N0B 2J0 Puslinch, Canada. 3Department of
Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON
N1G 2W1, Canada. 4Laboratory of Animal Nutrition, Faculty of Veterinary
Medicine, Ghent University, Merelbeke B-9820, Belgium. 5Gastrointestinal
Laboratory, Department of Small Animal Clinical Sciences, College of
Veterinary Medicine and Biomedical Sciences, Texas A&M University, College
Station 77843, TX, USA.

Received: 15 May 2019 Accepted: 16 March 2020

References
1. German A. Obesity in companion animals. In Practice. 2010;32(2):42–50.
2. Laflamme DP. Companion animals symposium: obesity in dogs and cats:

what is wrong with being fat? J Anim Sci. 2012;90(5):1653–62.
3. Laflamme DP. Understanding and managing obesity in dogs and cats. Vet

Clin North Am Small Anim Pract. 2006;36(6):1283–95.
4. Chandler M, Cunningham S, Lund EM, Khanna C, Naramore R, Patel A, Day

MJ. Obesity and associated comorbidities in people and companion
animals: a one health perspective. J Comp Pathol. 2017;156(4):296–309.

5. Courcier EA, Mellor DJ, Pendlebury E, Evans C, Yam PS. An investigation into
the epidemiology of feline obesity in Great Britain: results of a cross-
sectional study of 47 companion animal practises. Vet Rec. 2012;171(22):560.

6. U.S. Pet Obesity Rates Plateau and Nutritional Confusion Grows [https://
petobesityprevention.org/2018]. Accessed December 2019.

Tal et al. BMC Veterinary Research          (2020) 16:112 Page 13 of 15

https://doi.org/10.1111/jpn.13043
https://doi.org/10.1111/jpn.13043
https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP/9VAK4K
https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP/9VAK4K
https://petobesityprevention.org/2018
https://petobesityprevention.org/2018


7. Cave NJ, Allan FJ, Schokkenbroek SL, Metekohy CA, Pfeiffer DU. A cross-sectional
study to compare changes in the prevalence and risk factors for feline obesity
between 1993 and 2007 in New Zealand. Prev Vet Med. 2012;107(1–2):121–33.

8. Colliard L, Paragon BM, Lemuet B, Bénet JJ, Blanchard G. Prevalence and risk
factors of obesity in an urban population of healthy cats. J Feline Med Surg.
2009;11(2):135–40.

9. Burkholder WJ, Toll PW. Obesity. In: Hand MS, Thatcher CD, Remillard RL,
Roudebush PBJ, editors. Small Animal Clinical Nutrition. 4th ed. Marceline:
Mark Morris Institute; 2000. p. 401–30.

10. Robertson ID. The influence of diet and other factors on owner-perceived
obesity in privately owned cats from metropolitan Perth, Western Australia.
Prev Vet Med. 1999;40(2):75–85.

11. McGreevy PD, Thomson PC, Pride C, Fawcett A, Grassi T, Jones B. Prevalence
of obesity in dogs examined by Australian veterinary practices and the risk
factors involved. Vet Rec. 2005;156(22):695–702.

12. Toll PW, Yamka RM, Schoenherr WD, Hand MS. Obesity. In: Hand MS,
Thatcher CD, Remillard RL, Roudebush P, Novotny BJ, editors. Small Animal
Clinical Nutrition. 5th ed. Topeka: Mark Morris Institute; 2010. p. 501–41.

13. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF,
Gordon JI. The gut microbiota as an environmental factor that regulates fat
storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23.

14. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT. Short
chain fatty acids in human large intestine, portal, hepatic and venous blood.
Gut. 1987;28(10):1221–7.

15. Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, Hardt PD. Microbiota
and SCFA in lean and overweight healthy subjects. Obesity. 2010;18(1):190–5.

16. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular
analysis of commensal host-microbial relationships in the intestine. Science.
2001;291(5505):881–4.

17. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, BasFtelica D, Neyrinck AM,
Fava F, Tuohy KM, Chabo C. Metabolic endotoxemia initiates obesity and
insulin resistance. Diabetes. 2007;56(7):1761–72.

18. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity
alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070–5.

19. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut
microbes associated with obesity. Nature. 2006;444(7122):1022–3.

20. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M,
Quinquis B, Levenez F, Galleron N, et al. Dietary intervention impact on gut
microbial gene richness. Nature. 2013;500(7464):585–8.

21. Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and
obesity. J Physiol. 2009;587(17):4153–8.

22. Handl S, German AJ, Holden SL, Dowd SE, Steiner JM, Heilmann RM, Grant
RW, Swanson KS, Suchodolski JS. Faecal microbiota in lean and obese dogs.
FEMS Microbiol Ecol. 2013;84(2):332–43.

23. Kieler IN, Mølbak L, Hansen LL, Hermann-Bank ML, Bjornvad CR. Overweight
and the feline gut microbiome – a pilot study. J Anim Physiol Anim Nutr.
2016;100(3):478–84.

24. Pallotto MR, de Godoy MRC, Holscher HD, Buff PR, Swanson KS. Effects of weight
loss with a moderate-protein, high-fiber diet on body composition, voluntary
physical activity, and fecal microbiota of obese cats. Am J Vet Res. 2018;79(2):181–90.

25. Fischer MM, Kessler AM, Kieffer DA, Knotts TA, Kim K, Wei A, Ramsey JJ,
Fascetti J. Effects of obesity, energy restriction and neutering on the faecal
microbiota of cats. Br J Nutr. 2017;118:513–24.

26. Teixeira TFS, Collado MC, Ferreira CLLF, Bressan J, Peluzio MDCG. Potential
mechanisms for the emerging link between obesity and increased intestinal
permeability. Nut Res. 2012;32(9):637–47.

27. Brun P, Castagliuolo I, Di Leo V, Buda A, Pinzani M, Palù G, Martines D.
Increased intestinal permeability in obese mice: new evidence in the
pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest
Liver Physiol. 2007;292(2):G518–25.

28. Batt R. Update on the non-invasive monotoring of intestinal disease in dogs
and cats [folate and cobalamin assay, intestinal permeability, hydrogen
breath test]. Revue Med Vet. 2000;151(7):559–63.

29. Ruaux CG. Cobalamin in companion animals: diagnostic marker, deficiency
states and therapeutic implications. Vet J. 2013;196(2):145–52.

30. Sun Y, Sun M, Liu B, Du Y, Rong S, Xu G, Snetselaar LG, Bao W. Inverse association
between serum vitamin B12 concentration and obesity among adults in the
United States. Front Endocrinol. 2019. https://doi.org/10.3389/fendo.2019.00414.

31. Daviddi G, Ricci MA, De Vuono S, Gentili A, Boni M, Lupattelli G. Folate and
vitamin B12 in morbid obesity : the influence of folate on anti-atherogenic
lipid profile. Int J Vitam Nutr Res. 2019;4:1–7.

32. Roust LR, DiBaise JK. Nutrient deficiencies prior to bariatric surgery. Curr
Opin Clin Nutr Metab Care. 2017;20(2):138–44.

33. Thomas-Valdes S, Tostes MDGV, Anunciacao PC, de Silva BP, Sant’Ana HMP.
Association between vitamin deficiency and metabolic disorders related to
obesity. Crit Rev Food Sci Nutr. 2017;57(15):3332–43.

34. Ravussin Y, Koren O, Spor A, Leduc C, Gutman R, Stombaugh J, Knight R,
Ley RE, Leibel RL. Responses of gut microbiota to diet composition and
weight loss in lean and obese mice. Obesity. 2012;20(4):738–47.

35. Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked
to marked but reversible alterations in the mouse distal gut microbiome.
Cell Host Microbe. 2008;3(4):213–23.

36. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of
diet on the human gut microbiome: a metagenomic analysis in humanized
gnotobiotic mice. Sci Transl Med. 2009;1(6):6ra14.

37. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE,
Sogin ML, Jones WJ, Roe BA, Affourtit JP, et al. A core gut microbiome in
obese and lean twins. Nature. 2009;457:480–4.

38. Murphy EF, Cotter PD, Healy S, Marques TM, Sullivan O, Fouhy F, Clarke SF,
Toole PW, Quigley EM, Stanton C, et al. Composition and energy harvesting
capacity of the gut microbiota: relationship to diet, obesity and time in
mouse models. Gut. 2010;59(12):1635–42.

39. McCormack UM. In: Gardiner G, Lawlor PG, editors. Investigation and
subsequent manipulation of the intestinal microbiota of pigs, with a view
to optimizing feed efficiency. PhD Thesis; 2017.

40. Ferrario C, Taverniti V, Milani C, Fiore W, Laureati M, De Noni I, Stuknyte M,
Chouaia B, Riso P, Guglielmetti S. Modulation of fecal Clostridiales Bacteria
and butyrate by probiotic intervention with Lactobacillus paracasei DG
varies among healthy adults. J Nutr. 2014;144(11):1787–96.

41. Zhang H, Dibaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y,
Parameswaran P, Crowell MD, Wing R, Rittmann BE, et al. Human gut
microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S
A. 2009;106(7):2365–70.

42. Hill SA, Cave NJ, Forsyth S. Effect of age, sex and body weight on the serum
concentrations of cobalamin and folate in cats consuming a consistent diet.
J Feline Med Surg. 2018;20(2):135–41.

43. Pinhas-Hamiel O, Doron-Panush N, Reichman B, Nitzan-Kaluski D, Shalitin S,
Geva-Lerner L. Obese children and adolescents: a risk group for low vitamin
B12 concentration. Arch Pediatr Adolesc Med. 2006;160(9):933–6.

44. Yakut M, Ustun Y, Kabacam G, Soykan I. Serum vitamin B12 and folate status in
patients with inflammatory bowel diseases. Eur J Intern Med. 2010;21:320–3.

45. Weese JS, Jalali M. Evaluation of the impact of refrigeration on next
generation sequencing-based assessment of the canine and feline fecal
microbiota. BMC Vet Res. 2014;10:230.

46. Tal M, Verbrugghe A, Gomez D, Chau C, Weese JS. The effect of storage at
ambient temperature on the feline fecal microbiota. BMC Vet Res. 2017;
13(1):1–8.

47. Inness VL, McCartney AL, Khoo C, Gross KL, Gibson GR. Molecular
characterisation of the gut microflora of healthy and inflammatory
bowel disease cats using fluorescence in situ hybridisation with special
reference to Desulfovibrio spp. J Anim Physiol Anim Nutr (Berl). 2007;
91(1–2):48–53.

48. Abecia L, Hoyles L, Khoo C, Frantz N, McCartney AL. Effects of a novel
galactooligosaccharide on the faecal microbiota of healthy and
inflammatory bowel disease cats during a randomized, double-blind, cross-
over feeding study. Int J Probiotics Prebiotics. 2010;5(2):61–8.

49. Laflamme DP. Development and validation of a body condition score
system for cats: a clinical tool. Feline Pract. 1997;25(5–6):13–8.

50. Baldwin K, Bartges J, Buffington T, Freeman LM, Grabow M, Legred J,
Ostwald DJ. AAHA nutritional assessment guidelines for dogs and cats.
J Am Anim Hosp Assoc. 2010;46(4):285–96.

51. National Research Council (NRC). Energy. In: Nutrient Requirements of Dogs
and Cats. Washington: The National Academies Press; 2006.

52. Michel KE, Anderson W, Cupp C, Laflamme DP. Correlation of a feline muscle
mass score with body composition determined by dual-energy X-ray
absorptiometry. Br J Nutr. 2011;106(S1):S57–9.

53. Nelson RW, Himsel CA, Feldman EC, Bottoms GD. Glucose tolerance and insulin
response in normal-weight and obese cats. Am J Vet Res. 1990;51(9):1357–62.

54. Verbrugghe A, Hesta M, Daminet S, Polis I, Holst JJ, Buyse J, Wuyts B,
Janssens GP. Propionate absorbed from the colon acts as gluconeogenic
substrate in a strict carnivore, the domestic cat (Felis catus). J Anim Physiol
Anim Nutr (Berl). 2012;96(6):1054–64.

Tal et al. BMC Veterinary Research          (2020) 16:112 Page 14 of 15

https://doi.org/10.3389/fendo.2019.00414


55. Brooks D, Churchill J, Fein K, Linder D, Michel K, Tudor K, Ward E, Witzel A.
2014 AAHA weight management guidelines for dogs and cats. J Am Anim
Hosp Assoc. 2014;50(1):1–11.

56. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO.
Evaluation of general 16S ribosomal RNA gene PCR primers for classical and
next-generation sequencing-based diversity syudies. Nucleic Acids Res.
2013. https://doi.org/10.1093/nar/gks808.

57. Sturgeon A. In: Weese JS, editor. Analysis of the Oral and fecal microbiota of
companion animals using next-generation sequencing of the 16S rRNA
gene. MSc Thesis; 2014.

58. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB,
Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al. Introducing mothur:
open-source, platform-independent, community-supported software for
describing and comparing microbial communities. Appl Environ Microbiol.
2009;75(23):7537–41.

59. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development
of a dual- index sequencing strategy and Curation pipeline for analyzing
amplicon sequence data on the MiSeq Illumina sequencing platform. Appl
Environ Microbiol. 2013;79(17):5112–20.

60. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner
FO. The SILVA ribosomal RNA gene database project: improved data
processing and web-based tools. Nucleic Acids Res. 2013;41(D1):D590–6.

61. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity
and speed of chimera detection. Bioinformatics. 2011;27(16):2194–200.

62. Cole JR, Wang Q, Fish JA, Chai BL, McGarrell DM, Sun YN, Brown CT, Porras-
Alfaro A, Kuske CR, Tiedje JM. Ribosomal database project: data and tools
for high throughput rRNA analysis. Nucleic Acids Res. 2014;42(D1):D633–42.

63. Gihring T, Green S, Schadt CW. Massively parallel rRNA gene sequencing
exacerbates the potential for biased community diversity comparisons due
to variable library sizes. Environ Microbiol. 2011;14(2):285–90.

64. Shannon CE. A mathematical theory of communication. Bell Syst Tech J.
1948;27(3):379–423.

65. Simpson E. Measurement of Diversity. Nature. 1949;163:688.
66. Chao A. Nonparametric estimation of the number of classes in a population.

Scand J Stat. 1984;11(4):265–70.
67. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical

and powerful approach to multiple testing. J R Stat Soc Series B Stat
Methodol. 1995;57(1):289–300.

68. Smith E. Nonparametric estimation of species richness. Biometrics. 1984;
40(1):119–29.

69. Yue J, Clayton M. A similarity measure based on species proportions.
Commun Stat Theory Methods. 2005;34(11):2123–31.

70. Lozupone C, Hamady M, Knight R. UniFrac – an online tool for comparing
microbial community diversity in a phylogenetic context. BMC
Bioinformatics. 2006;7:371.

71. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS,
Huttenhower C. Metagenomic biomarker discovery and explanation.
Genome Biol. 2011;12(6):R60.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Tal et al. BMC Veterinary Research          (2020) 16:112 Page 15 of 15

https://doi.org/10.1093/nar/gks808

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Body weight and body composition measurements
	Serum Cobalamin and Folate concentrations
	Fecal microbiota analyses
	Relative abundance
	Alpha and beta diversity indices
	Linear discriminatory analysis effective size (LEfSe)


	Discussion
	Conclusions
	Methods
	Experimental design
	Adaptation period
	Weight loss period
	Laboratory analyses of blood samples
	Sample preparation and DNA extraction
	Polymerase chain reaction (PCR)
	DNA sequencing
	Bioinformatics and statistical analyses
	Abbreviations

	Acknowledgements
	Authors’ contributions
	Authors’ information
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

