15 research outputs found

    Factors Affecting European Farmers’Participation in Biodiversity Policies

    Get PDF
    This article reports the major findings from an interdisciplinary research project that synthesises key insights into farmers’ willingness and ability to co-operate with biodiversity policies. The results of the study are based on an assessment of about 160 publications and research reports from six EU member states and from international comparative research.We developed a conceptual framework to systematically review the existent literature relevant for our purposes. This framework provides a common structure for analysing farmers’ perspectives regarding the introduction into farming practices of measures relevant to biodiversity. The analysis is coupled and contrasted with a survey of experts. The results presented above suggest that it is important to view support for practices oriented towards biodiversity protection not in a static sense – as a situation determined by one or several influencing factors – but rather as a process marked by interaction. Financial compensation and incentives function as a necessary, though clearly not sufficient condition in this process

    Sequence element enrichment analysis to determine the genetic basis of bacterial phenotypes

    Get PDF
    Bacterial genomes vary extensively in terms of both gene content and gene sequence. This plasticity hampers the use of traditional SNP-based methods for identifying all genetic associations with phenotypic variation. Here we introduce a computationally scalable and widely applicable statistical method (SEER) for the identification of sequence elements that are significantly enriched in a phenotype of interest. SEER is applicable to tens of thousands of genomes by counting variable-length k-mers using a distributed string-mining algorithm. Robust options are provided for association analysis that also correct for the clonal population structure of bacteria. Using large collections of genomes of the major human pathogens Streptococcus pneumoniae and Streptococcus pyogenes, SEER identifies relevant previously characterized resistance determinants for several antibiotics and discovers potential novel factors related to the invasiveness of S. pyogenes. We thus demonstrate that our method can answer important biologically and medically relevant questions

    Global and regional dissemination and evolution of Burkholderia pseudomallei.

    No full text
    The environmental bacterium Burkholderia pseudomallei causes an estimated 165,000 cases of human melioidosis per year worldwide, and is also classified as a biothreat agent. We used whole genome sequences of 469 B. pseudomallei isolates from 30 countries collected over 79 years to explore its geographic transmission. Our data point to Australia as an early reservoir, with transmission to Southeast Asia followed by onward transmission to South Asia, and East Asia. Repeated reintroduction was observed within the Malay Peninsula, and between countries bordered by the Mekong river. Our data support an African origin of the Central and South American isolates with introduction of B. pseudomallei into the Americas between 1650 and 1850, providing a temporal link with the slave trade. We also identified geographically distinct genes/variants in Australasian or Southeast Asian isolates alone, with virulence-associated genes being among those overrepresented. This provides a potential explanation for clinical manifestations of melioidosis that are geographically restricted

    Global and regional dissemination and evolution of Burkholderia pseudomallei\textit{Burkholderia pseudomallei}

    Get PDF
    The environmental bacterium Burkholderia pseudomallei\textit{Burkholderia pseudomallei} causes an estimated 165,000 cases of human melioidosis per year worldwide and is also classified as a biothreat agent. We used whole genome sequences of 469 B. pseudomallei\textit{B. pseudomallei}isolates from 30 countries collected over 79 years to explore its geographic transmission. Our data point to Australia as an early reservoir, with transmission to Southeast Asia followed by onward transmission to South Asia and East Asia. Repeated reintroductions were observed within the Malay Peninsula and between countries bordered by the Mekong River. Our data support an African origin of the Central and South American isolates with introduction of B. pseudomallei into the Americas between 1650 and 1850, providing a temporal link with the slave trade. We also identified geographically distinct genes/variants in Australasian or Southeast Asian isolates alone, with virulence-associated genes being among those over-represented. This provides a potential explanation for clinical manifestations of melioidosis that are geographically restricted.C.C. is a Sir Henry Wellcome post-doctoral Fellow (grant ref: 107376/Z/15/Z). J.C., M.V., Z.Y. were supported by the COIN Centre of Excellence and Z.Y. by a HIIT post-doctoral fellowship. A.E.M. is supported by Biotechnology and Biological Sciences Research Council grant BB/M014088/1. B.G.S. was supported by the Wellcome Trust grant WT089472. D.A.B.D and R.P. are supported by the Wellcome Trust grants 106698/Z/14 and B9R00760. D.L. and V.W. are supported by the Wellcome Trust grant 089275/Z/09/Z. M.M. and B.J.C are supported by the Australian National Health and Medical Research Council through project grants #1046812 and #1098337. This publication presents independent research supported by the Health Innovation Challenge Fund (WT098600, HICF-T5-342), a parallel funding partnership between the Department of Health and Wellcome Trust

    The Contribution of Genetic Variation of Streptococcus Pneumoniae to the Clinical Manifestation of Invasive Pneumococcal Disease

    No full text
    Background: Different clinical manifestations of invasive pneumococcal disease (IPD) have thus far mainly been explained by patient characteristics. Here we studied the contribution of pneumococcal genetic variation to IPD phenotype. Methods: The index cohort consisted of 349 patients admitted to two Dutch hospitals between 2000-2011 with pneumococcal bacteraemia. We performed genome-wide association studies to identify pneumococcal lineages, genes and allelic variants associated with 23 clinical IPD phenotypes. The identified associations were validated in a nationwide (n=482) and a post-pneumococcal vaccination cohort (n=121). The contribution of confirmed pneumococcal genotypes to the clinical IPD phenotype, relative to known clinical predictors, was tested by regression analysis. Results: Among IPD patients, the presence of pneumococcal gene slaA was a nationwide confirmed independent predictor of meningitis (OR=10.5, p=0.001, 5% presence), as was sequence cluster 9 (predominant serotype 7F, OR=3.68, p=0.057, 11% presence). A set of 4 pneumococcal genes co-located on a prophage was a confirmed independent predictor of 30-day mortality (OR=3.4, p=0.003, 48% presence). We could detect the pneumococcal variants of concern in these patients' blood samples. Conclusions: In this study, knowledge of pneumococcal genotypic variants improved the clinical risk assessment for detrimental manifestations of IPD. This provides us with novel opportunities to target, anticipate or avert the pathogenic effects related to particular pneumococcal variants, and indicates that information on pneumococcal genotype is important for the diagnostic and treatment strategy in IPD. Ongoing surveillance is warranted to monitor the clinical value of information on pneumococcal variants in dynamic microbial and susceptible host populations

    The Contribution of Genetic Variation of Streptococcus Pneumoniae to the Clinical Manifestation of Invasive Pneumococcal Disease

    No full text
    Background: Different clinical manifestations of invasive pneumococcal disease (IPD) have thus far mainly been explained by patient characteristics. Here we studied the contribution of pneumococcal genetic variation to IPD phenotype. Methods: The index cohort consisted of 349 patients admitted to two Dutch hospitals between 2000-2011 with pneumococcal bacteraemia. We performed genome-wide association studies to identify pneumococcal lineages, genes and allelic variants associated with 23 clinical IPD phenotypes. The identified associations were validated in a nationwide (n=482) and a post-pneumococcal vaccination cohort (n=121). The contribution of confirmed pneumococcal genotypes to the clinical IPD phenotype, relative to known clinical predictors, was tested by regression analysis. Results: Among IPD patients, the presence of pneumococcal gene slaA was a nationwide confirmed independent predictor of meningitis (OR=10.5, p=0.001, 5% presence), as was sequence cluster 9 (predominant serotype 7F, OR=3.68, p=0.057, 11% presence). A set of 4 pneumococcal genes co-located on a prophage was a confirmed independent predictor of 30-day mortality (OR=3.4, p=0.003, 48% presence). We could detect the pneumococcal variants of concern in these patients' blood samples. Conclusions: In this study, knowledge of pneumococcal genotypic variants improved the clinical risk assessment for detrimental manifestations of IPD. This provides us with novel opportunities to target, anticipate or avert the pathogenic effects related to particular pneumococcal variants, and indicates that information on pneumococcal genotype is important for the diagnostic and treatment strategy in IPD. Ongoing surveillance is warranted to monitor the clinical value of information on pneumococcal variants in dynamic microbial and susceptible host populations
    corecore