51 research outputs found

    MOFSocialNet: Exploiting Metal-Organic Framework Relationships via Social Network Analysis

    Get PDF
    The number of metal-organic frameworks (MOF) as well as the number of applications of this material are growing rapidly. With the number of characterized compounds exceeding 100,000, manual sorting becomes impossible. At the same time, the increasing computer power and established use of automated machine learning approaches makes data science tools available, that provide an overview of the MOF chemical space and support the selection of suitable MOFs for a desired application. Among the different data science tools, graph theory approaches, where data generated from numerous real-world applications is represented as a graph (network) of interconnected objects, has been widely used in a variety of scientific fields such as social sciences, health informatics, biological sciences, agricultural sciences and economics. We describe the application of a particular graph theory approach known as social network analysis to MOF materials and highlight the importance of community (group) detection and graph node centrality. In this first application of the social network analysis approach to MOF chemical space, we created MOFSocialNet. This social network is based on the geometrical descriptors of MOFs available in the CoRE-MOFs database. MOFSocialNet can discover communities with similar MOFs structures and identify the most representative MOFs within a given community. In addition, analysis of MOFSocialNet using social network analysis methods can predict MOF properties more accurately than conventional ML tools. The latter advantage is demonstrated for the prediction of gas storage properties, the most important property of these porous reticular network

    Assembly of Molecular Building Blocks into Integrated Complex Functional Molecular Systems: Structuring Matter Made to Order

    Get PDF
    Function-inspired design of molecular building blocks for their assembly into complex systems has been an objective in engineering nanostructures and materials modulation at nanoscale. This article summarizes recent research and inspiring progress in the design/synthesis of various custom-made chiral, switchable, and highly responsive molecular building blocks for the construction of diverse covalent/noncovalent assemblies with tailored topologies, properties, and functions. Illustrating the judicious selection of building blocks, orthogonal functionalities, and innate physical/chemical properties that bring diversity and complex functions once reticulated into materials, special focus is given to their assembly into porous crystalline networks such as metal/covalent–organic frameworks (MOFs/COFs), surface-mounted frameworks (SURMOFs), metal–organic cages/rings (MOCs), cross-linked polymer gels, porous organic polymers (POPs), and related architectures that find diverse applications in life science and various other functional materials. Smart and stimuli-responsive or dynamic building blocks, once embedded into materials, can be remotely modulated by external stimuli (light, electrons, chemicals, or mechanical forces) for controlling the structure and properties, thus being applicable for dynamic photochemical and mechanochemical control in constructing new forms of matter made to order. Then, an overview of current challenges, limitations, as well as future research directions and opportunities in this field, are discussed

    Rising Up: Hierarchical Metal–Organic Frameworks in Experiments and Simulations

    Get PDF
    Controlled synthesis across several length scales, ranging from discrete molecular building blocks to size‐ and morphology‐controlled nanoparticles to 2D sheets and thin films and finally to 3D architectures, is an advanced and highly active research field within both the metal–organic framework (MOF) domain and the overall material science community. Along with synthetic progress, theoretical simulations of MOF structures and properties have shown tremendous progress in both accuracy and system size. Further advancements in the field of hierarchically structured MOF materials will allow the optimization of their performance; however, this optimization requires a deep understanding of the different synthesis and processing techniques and an enhanced implementation of material modeling. Such modeling approaches will allow us to select and synthesize the highest‐performing structures in a targeted rational manner. Here, recent progress in the synthesis of hierarchically structured MOFs and multiscale modeling and associated simulation techniques is presented, along with a brief overview of the challenges and future perspectives associated with a simulation‐based approach toward the development of advanced hierarchically structured MOF materials

    Radical exchange reaction of multi-spin isoindoline nitroxides followed by EPR spectroscopy

    Get PDF
    The synthesis of a rigid, isoindoline-functionalized tetraphenylmethane multi-spin system is described. The isoindoline nitroxide groups are used in a nitroxide exchange reaction with a TEMPO containing alkoxyamine. Using EPR spectroscopy it is possible to follow the exchange process and thereby find the optimal experimental conditions to have the maximum yield. The presented approach could be used to study the nitroxide exchange process of various systems and to determine the kinetics of the exchange process. The presented molecular components can be used as tectons in the construction of covalently linked organic networks or as model systems for EPR distance measurements

    Potentiation of 5-fluorouracil encapsulated in zeolites as drug delivery systems for in vitro models of colorectal carcinoma

    Get PDF
    The studies of potentiation of 5-fluorouracil (5-FU), a traditional drug used in the treatment of several cancers, including colorectal (CRC), were carried out with zeolites Faujasite in the sodium form, with different particle sizes (NaY, 700nm and nanoNaY, 150nm) and Linde type L in the potassium form (LTL) with a particle size of 80nm. 5-FU was loaded into zeolites by liquid-phase adsorption. Characterization by spectroscopic techniques (FTIR, 1H NMR and 13C and 27Al solid-state MAS NMR), chemical analysis, thermal analysis (TGA), nitrogen adsorption isotherms and scanning electron microscopy (SEM), demonstrated the successful loading of 5-FU into the zeolite hosts. In vitro drug release studies (PBS buffer pH 7.4, 37°C) revealed the release of 80-90% of 5-FU in the first 10min. To ascertain the drug release kinetics, the release profiles were fitted to zero-order, first-order, Higuchi, Hixson-Crowell, Korsmeyer-Peppas and Weibull kinetic models. The in vitro dissolution from the drug delivery systems (DDS) was explained by the Weibull model. The DDS efficacy was evaluated using two human colorectal carcinoma cell lines, HCT-15 and RKO. Unloaded zeolites presented no toxicity to both cancer cells, while all DDS allowed an important potentiation of the 5-FU effect on the cell viability. Immunofluorescence studies provided evidence for zeolite-cell internalization.RA is recipient of fellowship SFRH/BI/51118/2010 from Fundacao para a Ciencia e a Tecnologia (FCT, Portugal). This work was supported by the FCT projects refs. PEst-C/QUI/UI0686/2011 and PEst-C/CTM/LA0011/2011 and the Centre of Chemistry and Life and Health Sciences Research Institute (University of Minho, Portugal). The NMR spectrometer is part of the National NMR Network (RNRMN), supported with funds from FCT/QREN (Quadro de Referencia Estrategico Nacional)

    Zeolite structures loading with an anticancer compound as drug delivery systems

    Get PDF
    The authors are thankful to Dr. A. S. Azevedo for collecting the powder diffraction data.Two different structures of zeolites, faujasite (FAU) and Linde type A (LTA), were studied to investigate their suitability for drug delivery systems (DDS). The zeolites in the sodium form (NaY and NaA) were used as hosts for encapsulation of α-cyano-4- hydroxycinnamic acid (CHC). CHC, an experimental anticancer drug, was encapsulated in both zeolites by diffusion in liquid phase. These new drug delivery systems, CHC@zeolite, were characterized by spectroscopic techniques (FTIR, 1H NMR, 13C and 27Al solidstate MAS NMR, and UV−vis), chemical analysis, powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of the zeolites and CHC@zeolite drug deliveries on HCT-15 human colon carcinoma cell line viability was evaluated. Both zeolites alone revealed no toxicity to HCT-15 cancer cells. Importantly, CHC@zeolite exhibit an inhibition of cell viability up to 585-fold, when compared to the non-encapsulated drug. These results indicate the potential of the zeolites for drug loading and delivery into cancer cells to induce cell deathO.M. and R.A. are recipients of fellowships (SFRH/BD/36463/2007, SFRH/BI/51118/2010) from Fundação para a Ciência e a Tecnologia (FCT, Portugal). This work was supported by the FCT projects refs PEst-C/ QUI/UI0686/2011, PEst-C/CTM/LA0011/2011, and PTDC/ SAU-FCF/104347/2008, under the scope of “Programa Operacional Temático Factores de Competitividade” (COMPETE) of “Quadro Comunitário de Apoio III” and cofinanced by Fundo Comunitário Europeu FEDER, and the Centre of Chemistry and Life and Health Sciences Research Institute (University of Minho, Portugal)

    Functionalized nanocontainers as dual magnetic and optical probes for molecular imaging applications

    No full text
    A dual-probe optical and magnetic imaging system has been synthesized out of nanometer-sized zeolite L crystals. The zeolite channels contain the optically emitting green pyronine molecules which can be used as fluorescent labels for optical imaging. The surface has been modified by a gadolinium complex which introduces a probe for magnetic resonance imaging (MRI). The combination of the excellent three-dimensional spatial resolution of MRI with the high sensitivity of optical imaging should lead to a system which overcomes the shortcomings of each individual technology. The system has been characterized by fluorescence microscopy and nuclear magnetic resonance dispersion (NMRD) spectroscopy. The results obtained show that the probes open up interesting possibilities for imaging based on multiple read outs
    corecore