62 research outputs found

    Severe bronchiolitis in infants born very preterm and neurodevelopmental outcome at 2 years

    Get PDF
    Preterm infants are at greater risk of bronchopulmonary dysplasia, which is associated with neurodevelopmental impairment. These infants are also more likely to develop severe bronchiolitis, which can contribute to neurodevelopmental impairment. The aim of this study was to determine whether severe bronchiolitis in very preterm infants (born before 33 weeks of gestation) was associated with an increased risk of neurodevelopmental impairment at 2 years of age. We analyzed a population-based cohort of infants (the Loire Infant Follow-up Team cohort) born between 1 January 2003 and 31 December 2009. Severe bronchiolitis was defined as hospitalization due to bronchiolitis during the first year of life. Neurodevelopmental outcome was assessed at 2 years of corrected age. A total of 2,405 infants were included in this analysis and categorized based on neonatal respiratory status: 1,308 (54.4 %) received no respiratory assistance, 864(35.9 %) received oxygen for <28 days, and 167 (6.9 %) had mild and 66 (2.7) moderate or severe bronchopulmonary dysplasia. At 2 years, 502 children displayed non-optimal neurodevelopmental outcome (20.9 %). Moderate or severe bronchopulmonary dysplasia was significantly associated with non-optimal neurodevelopmental outcome at 2 years (adjusted odds ratios (OR) = 2.3 [95 % confidence interval (CI): 1.3–3.9], p = 0.003). In the first year, 318 infants acquired severe bronchiolitis (13.2 %), which was not associated with non-optimal neurodevelopmental outcome (adjusted OR = 1.0 [95 % CI: 0.8–1.4]; p = 0.88). In conclusion, respiratory status in the neonatal period was significantly associated with non-optimal neurodevelopmental outcome at 2 years, while severe bronchiolitis was not

    Back pain in Portuguese schoolchildren: prevalence and risk factors

    Get PDF
    2 Centre of Research, Education, Innovation and Intervention In Sport, Faculty of Sport, University of Porto, Portugal Background: Regarding children aged _10 years, only a few international studies were conducted to determine the prevalence of and risk factors for back pain. Although other studies on the older Portuguese children point to prevalence between 17% and 39%, none exists for this specific age-group. Thus, the aim of this study was conducted to establish the prevalence of and risk factors for back pain in schoolchildren aged 7–10 years. Methods: A cross-sectional survey among 637 children was conducted. A self-rating questionnaire was used to verify prevalence and duration of back pain, life habits, school absence, medical treatments or limitation of activities. For posture assessment, photographic records with a bio-photogrammetric analysis were used to obtain data about head, acromion and pelvic alignment, horizontal alignment of the scapulae, vertical alignment of the trunk and vertical body alignment. Results: Postural problems were found in 25.4% of the children, especially in the 8- and 9-year-old groups. Back pain occurs in 12.7% with the highest values among the 7- and 10-year-old children. The probability of back pain increased 7 times when the children presented a history of school absences, 4.3 times when they experienced sleeping difficulties, 4.4 times when school furniture was uncomfortable, 4.7 times if the children perceived an occurrence of parental back pain and 2.5 times when children presented incorrect posture. Conclusions: The combination of school absences, parental pain, sleeping difficulties, inappropriate school furniture and postural deviations at the sagittal and frontal planes seem to prove the multifactorial aetiology of back pain

    The postural effects of load carriage on young people – a systematic review

    Get PDF
    BACKGROUND: Spinal pain in young people is a significant source of morbidity in industrialised countries. The carriage of posterior loads by young people has been linked with spinal pain, and the amount of postural change produced by load carriage has been used as a measure of the potential to cause tissue damage. The purpose of this review was to identify, appraise and collate the research evidence regarding load-carriage related postural changes in young people. METHODS: A systematic literature review sought published literature on the postural effects of load carriage in young people. Sixteen databases were searched, which covered the domains of allied health, childcare, engineering, health, health-research, health-science, medicine and medical sciences. Two independent reviewers graded the papers according to Lloyd-Smith's hierarchy of evidence scale. Papers graded between 1a (meta-analysis of randomised controlled trials) and 2b (well-designed quasi-experimental study) were eligible for inclusion in this review. These papers were quality appraised using a modified Crombie tool. The results informed the collation of research evidence from the papers sourced. RESULTS: Seven papers were identified for inclusion in this review. Methodological differences limited our ability to collate evidence. CONCLUSIONS: Evidence based recommendations for load carriage in young people could not be made based on the results of this systematic review, therefore constraining the use of published literature to inform good load carriage practice for young people

    Postural effects of symmetrical and asymmetrical loads on the spines of schoolchildren

    Get PDF
    The school backpack constitutes a daily load for schoolchildren: we set out to analyse the postural effects of this load, considering trunk rotation, shoulder asymmetry, thoracic kyphosis, lumbar lordosis, and sagittal and frontal decompensation from the plumbline. A group of 43 subjects (mean age = 12.5 ± 0.5 years) were considered: average backpack loads and average time spent getting to/from home/school (7 min) had been determined in a previous study conducted on this population. Children were evaluated by means of an optoelectronic device in different conditions corresponding to their usual everyday school backpack activities: without load; bearing 12 (week maximum) and 8 (week average) kg symmetrical loads; bearing an 8 kg asymmetrical load; after fatigue due to backpack carrying (a 7-minute treadmill walking session bearing an 8 kg symmetrical load). Both types of load induce changes in posture: the symmetrical one in the sagittal plane, without statistical significant differences between 8 and 12 kg, and the asymmetrical one in all anatomical planes. Usual fatigue accentuates sagittal effects, but recovery of all parameters (except lumbar lordosis) follows removal of the load. The backpack load effect on schoolchildren posture should be more carefully evaluated in the future, even if we must bear in mind that laws protect workers to carry heavy loads but not children, and results in the literature support the hypothesis that back pain in youngsters is correlated with back pain in adulthoo

    Adolescent standing postural response to backpack loads: a randomised controlled experimental study

    Get PDF
    BACKGROUND: Backpack loads produce changes in standing posture when compared with unloaded posture. Although 'poor' unloaded standing posture has been related to spinal pain, there is little evidence of whether, and how much, exposure to posterior load produces injurious effects on spinal tissue. The objective of this study was to describe the effect on adolescent sagittal plane standing posture of different loads and positions of a common design of school backpack. The underlying study aim was to test the appropriateness of two adult 'rules-of-thumb'-that for postural efficiency, backpacks should be worn high on the spine, and loads should be limited to 10% of body weight. METHOD: A randomised controlled experimental study was conducted on 250 adolescents (12–18 years), randomly selected from five South Australian metropolitan high schools. Sagittal view anatomical points were marked on head, neck, shoulder, hip, thigh, knee and ankle. There were nine experimental conditions: combinations of backpack loads (3, 5 or 10% of body weight) and positions (backpack centred at T7, T12 or L3). Sagittal plane photographs were taken of unloaded standing posture (baseline), and standing posture under the experimental conditions. Posture was quantified from the x (horizontal) coordinate of each anatomical point under each experimental condition. Differences in postural response were described, and differences between conditions were determined using Analysis of Variance models. RESULTS: Neither age nor gender was a significant factor when comparing postural response to backpack loads or conditions. Backpacks positioned at T7 produced the largest forward (horizontal) displacement at all the anatomical points. The horizontal position of all anatomical points increased linearly with load. CONCLUSION: There is evidence refuting the 'rule-of-thumb' to carry the backpack high on the back. Typical school backpacks should be positioned with the centre at waist or hip level. There is no evidence for the 10% body weight limit

    Musculoskeletal injuries among operating room nurses: results from a multicenter survey in Rome, Italy

    Full text link
    Aim: Chronic disorders of the musculoskeletal system, particularly low back pain (LBP), are increasing and represent a social and economic problem of growing importance, especially if correlated with working conditions. Health care workers are at higher risk of developing LBP during work shifts in the hospital. The aim of this study was to assess the prevalence of LBP among operating room nurses and to investigate the risk factors for musculoskeletal injuries in the operating room. Methods: We carried out a cross-sectional study that included operating room nurses from nine hospitals. Information on sociodemographic characteristics, lifestyle habits, working activity and psychological attitude of nurses was collected using an anonymous self-administered structured questionnaire. We evaluated the association of frequency, localization and intensity of LBP (FLI) with qualitative variables, making use of univariate analysis, chi-square test and Fisher's exact test. Multiple logistic regression analysis was performed to identify the variables that affected the FLI. The covariates included in the model were the variables that had a p 35 years vs. age <35 (OR = 2.68; 95% CI = 1.17–6.18) and diurnal work shift vs. diurnal/ nocturnal (OR = 4.00; 95% CI = 1.72–9.0) represent risk factors associated with FLI, while physical activity is a protective factor (OR = 0.47; 95% CI = 0.20–1.08). Conclusion: The data suggest that it is important to promote new programs of prevention based on professional training and physical activity among nurses and to improve the organization of work shifts in the hospital

    Thoracic spine pain in the general population: Prevalence, incidence and associated factors in children, adolescents and adults. A systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thoracic spine pain (TSP) is experienced across the lifespan by healthy individuals and is a common presentation in primary healthcare clinical practice. However, the epidemiological characteristics of TSP are not well documented compared to neck and low back pain. A rigorous evaluation of the prevalence, incidence, correlates and risk factors needs to be undertaken in order for epidemiologic data to be meaningfully used to develop evidence-based prevention and treatment recommendations for TSP.</p> <p>Methods</p> <p>A systematic review method was followed to report the evidence describing prevalence, incidence, associated factors and risk factors for TSP among the general population. Nine electronic databases were systematically searched to identify studies that reported either prevalence, incidence, associated factors (cross-sectional study) or risk factors (prospective study) for TSP in healthy children, adolescents or adults. Studies were evaluated for level of evidence and method quality.</p> <p>Results</p> <p>Of the 1389 studies identified in the literature, 33 met the inclusion criteria for this systematic review. The mean (SD) quality score (out of 15) for the included studies was 10.5 (2.0). TSP prevalence data ranged from 4.0–72.0% (point), 0.5–51.4% (7-day), 1.4–34.8% (1-month), 4.8–7.0% (3-month), 3.5–34.8% (1-year) and 15.6–19.5% (lifetime). TSP prevalence varied according to the operational definition of TSP. Prevalence for any TSP ranged from 0.5–23.0%, 15.8–34.8%, 15.0–27.5% and 12.0–31.2% for 7-day, 1-month, 1-year and lifetime periods, respectively. TSP associated with backpack use varied from 6.0–72.0% and 22.9–51.4% for point and 7-day periods, respectively. TSP interfering with school or leisure ranged from 3.5–9.7% for 1-year prevalence. Generally, studies reported a higher prevalence for TSP in child and adolescent populations, and particularly for females. The 1 month, 6 month, 1 year and 25 year incidences were 0–0.9%, 10.3%, 3.8–35.3% and 9.8% respectively. TSP was significantly associated with: concurrent musculoskeletal pain; growth and physical; lifestyle and social; backpack; postural; psychological; and environmental factors. Risk factors identified for TSP in adolescents included age (being older) and poorer mental health.</p> <p>Conclusion</p> <p>TSP is a common condition in the general population. While there is some evidence for biopsychosocial associations it is limited and further prospectively designed research is required to inform prevention and management strategies.</p

    Thoracic spine pain in the general population: Prevalence, incidence and associated factors in children, adolescents and adults. A systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thoracic spine pain (TSP) is experienced across the lifespan by healthy individuals and is a common presentation in primary healthcare clinical practice. However, the epidemiological characteristics of TSP are not well documented compared to neck and low back pain. A rigorous evaluation of the prevalence, incidence, correlates and risk factors needs to be undertaken in order for epidemiologic data to be meaningfully used to develop evidence-based prevention and treatment recommendations for TSP.</p> <p>Methods</p> <p>A systematic review method was followed to report the evidence describing prevalence, incidence, associated factors and risk factors for TSP among the general population. Nine electronic databases were systematically searched to identify studies that reported either prevalence, incidence, associated factors (cross-sectional study) or risk factors (prospective study) for TSP in healthy children, adolescents or adults. Studies were evaluated for level of evidence and method quality.</p> <p>Results</p> <p>Of the 1389 studies identified in the literature, 33 met the inclusion criteria for this systematic review. The mean (SD) quality score (out of 15) for the included studies was 10.5 (2.0). TSP prevalence data ranged from 4.0–72.0% (point), 0.5–51.4% (7-day), 1.4–34.8% (1-month), 4.8–7.0% (3-month), 3.5–34.8% (1-year) and 15.6–19.5% (lifetime). TSP prevalence varied according to the operational definition of TSP. Prevalence for any TSP ranged from 0.5–23.0%, 15.8–34.8%, 15.0–27.5% and 12.0–31.2% for 7-day, 1-month, 1-year and lifetime periods, respectively. TSP associated with backpack use varied from 6.0–72.0% and 22.9–51.4% for point and 7-day periods, respectively. TSP interfering with school or leisure ranged from 3.5–9.7% for 1-year prevalence. Generally, studies reported a higher prevalence for TSP in child and adolescent populations, and particularly for females. The 1 month, 6 month, 1 year and 25 year incidences were 0–0.9%, 10.3%, 3.8–35.3% and 9.8% respectively. TSP was significantly associated with: concurrent musculoskeletal pain; growth and physical; lifestyle and social; backpack; postural; psychological; and environmental factors. Risk factors identified for TSP in adolescents included age (being older) and poorer mental health.</p> <p>Conclusion</p> <p>TSP is a common condition in the general population. While there is some evidence for biopsychosocial associations it is limited and further prospectively designed research is required to inform prevention and management strategies.</p

    Risk factors for development of non-specific musculoskeletal pain in preteens and early adolescents: a prospective 1-year follow-up study

    Get PDF
    Background Musculoskeletal pain symptoms are common in children and adolescents. These symptoms have a negative impact on children's physical and emotional well-being, but their underlying aetiology and risk factors are still poorly understood. Most of the previous cohort studies were conducted among mid and/or late adolescents and were mainly focused on a specific pain location (e.g. low back pain or neck pain). The purpose of this study is to estimate occurrence of new-onset pain symptoms, in all musculoskeletal locations, in preteens and early adolescents and investigate risk factors for development of these symptoms. Methods 1756 schoolchildren (mean age 10.8) were recruited from schools in southern Finland. Information was extracted as to whether they experienced musculoskeletal pain and a total of 1192 children were identified as free of musculoskeletal pain symptoms. Information was collected on factors which could potentially predict the development of musculoskeletal pain: headache, abdominal pain, sadness/feeling down, day-time tiredness, difficulty in falling asleep, waking up during nights, level of physical activity and hypermobility. These children were followed-up 1-year later and those with new episodes of non-traumatic and traumatic musculoskeletal pain symptoms were identified. Results A total of 1113 schoolchildren (93% of baseline pain-free children) were found at one-year follow-up. New episodes of musculoskeletal pain were reported by 21.5% of these children. Of them 19.4% reported non-traumatic pain and 4.0% reported traumatic pain. The neck was the most commonly reported site with non-traumatic pain, while the lower limb was the most common site for traumatic pain. The independent risk factors for non-traumatic musculoskeletal pain were headache (OR = 1.68, [95% CI 1.16–2.44]) and day-time tiredness (OR = 1.53, [95% CI 1.03–2.26]). The risk factors for traumatic musculoskeletal pain were vigorous exercise (OR = 3.40 [95% CI 1.39–8.31]) and day-time tiredness (OR = 2.97 [95% CI 1.41–6.26]). Conclusion This study highlights that there may be two types of pain entities with both distinct and common aspects of aetiology. For primary prevention purposes, school healthcare professionals should pay attention to preteens and early adolescents practicing vigorous exercise (predictor of traumatic pain), reporting headache (predictor of non-traumatic pain) and reporting day-time tiredness (predictor of both types of pain).BioMed Central Open acces
    corecore