7,661 research outputs found
Confirmation of circumstellar phosphine
Phosphine (PH3) was tentatively identified a few years ago in the carbon star
envelopes IRC+10216 and CRL2688 from observations of an emission line at 266.9
GHz attributable to the J=1-0 rotational transition. We report the detection of
the J=2-1 rotational transition of PH3 in IRC+10216 using the HIFI instrument
on board Herschel, which definitively confirms the identification of PH3.
Radiative transfer calculations indicate that infrared pumping to excited
vibrational states plays an important role in the excitation of PH3 in the
envelope of IRC+10216, and that the observed lines are consistent with
phosphine being formed anywhere between the star and 100 R* from the star, with
an abundance of 1e-8 relative to H2. The detection of PH3 challenges chemical
models, none of which offers a satisfactory formation scenario. Although PH3
locks just 2 % of the total available phosphorus in IRC+10216, it is together
with HCP, one of the major gas phase carriers of phosphorus in the inner
circumstellar layers, suggesting that it could be also an important phosphorus
species in other astronomical environments. This is the first unambiguous
detection of PH3 outside the solar system, and a further step towards a better
understanding of the chemistry of phosphorus in space.Comment: Accepted for publication in ApJ Letter
Collapse, outflows and fragmentation of massive, turbulent and magnetized prestellar barotropic cores
Stars and more particularly massive stars, have a drastic impact on galaxy
evolution. Yet the conditions in which they form and collapse are still not
fully understood. In particular, the influence of the magnetic field on the
collapse of massive clumps is relatively unexplored, it is thus of great
relevance in the context of the formation of massive stars to investigate its
impact. We perform high resolution, MHD simulations of the collapse of hundred
solar masses, turbulent and magnetized clouds, using the adaptive mesh
refinement code RAMSES. We compute various quantities such as mass
distribution, magnetic field and angular momentum within the collapsing core
and study the episodic outflows and the fragmentation that occurs during the
collapse. The magnetic field has a drastic impact on the cloud evolution. We
find that magnetic braking is able to substantially reduce the angular momentum
in the inner part of the collapsing cloud. Fast and episodic outflows are being
launched with typical velocities of the order of 3-5 km s although the
highest velocities can be as high as 30-40 km s. The fragmentation in
several objects, is reduced in substantially magnetized clouds with respect to
hydrodynamical ones by a factor of the order of 1.5-2. We conclude that
magnetic fields have a significant impact on the evolution of massive clumps.
In combination with radiation, magnetic fields largely determine the outcome of
massive core collapse. We stress that numerical convergence of MHD collapse is
a challenging issue. In particular, numerical diffusion appears to be important
at high density therefore possibly leading to an over-estimation of the number
of fragments.Comment: accepted for publication in A&
High-velocity hot CO emission close to Sgr A*: Herschel/HIFI submillimeter spectral survey toward Sgr A*
The properties of molecular gas, the fuel that forms stars, inside the cavity
of the circumnuclear disk (CND) are not well constrained. We present results of
a velocity-resolved submillimeter scan (~480 to 1250 GHz}) and [CII]158um line
observations carried out with Herschel/HIFI toward Sgr A*; these results are
complemented by a ~2'x2' CO (J=3-2) map taken with the IRAM 30 m telescope at
~7'' resolution. We report the presence of high positive-velocity emission (up
to about +300 km/s) detected in the wings of CO J=5-4 to 10-9 lines. This wing
component is also seen in H2O (1_{1,0}-1_{0,1}) a tracer of hot molecular gas;
in [CII]158um, an unambiguous tracer of UV radiation; but not in [CI]492,806
GHz. This first measurement of the high-velocity CO rotational ladder toward
Sgr A* adds more evidence that hot molecular gas exists inside the cavity of
the CND, relatively close to the supermassive black hole (< 1 pc). Observed by
ALMA, this velocity range appears as a collection of CO (J=3-2) cloudlets lying
in a very harsh environment that is pervaded by intense UV radiation fields,
shocks, and affected by strong gravitational shears. We constrain the physical
conditions of the high positive-velocity CO gas component by comparing with
non-LTE excitation and radiative transfer models. We infer T_k~400 K to 2000 K
for n_H~(0.2-1.0)x10^5 cm^-3. These results point toward the important role of
stellar UV radiation, but we show that radiative heating alone cannot explain
the excitation of this ~10-60 M_Sun component of hot molecular gas inside the
central cavity. Instead, strongly irradiated shocks are promising candidates.Comment: Accepted for publication in A&A Letters ( this v2 includes
corrections by language editor
The hyperfine structure in the rotational spectrum of CF+
Context. CF+ has recently been detected in the Horsehead and Orion Bar
photo-dissociation regions. The J=1-0 line in the Horsehead is double-peaked in
contrast to other millimeter lines. The origin of this double-peak profile may
be kinematic or spectroscopic. Aims. We investigate the effect of hyperfine
interactions due to the fluorine nucleus in CF+ on the rotational transitions.
Methods. We compute the fluorine spin rotation constant of CF+ using high-level
quantum chemical methods and determine the relative positions and intensities
of each hyperfine component. This information is used to fit the theoretical
hyperfine components to the observed CF+ line profiles, thereby employing the
hyperfine fitting method in GILDAS. Results. The fluorine spin rotation
constant of CF+ is 229.2 kHz. This way, the double-peaked CF+ line profiles are
well fitted by the hyperfine components predicted by the calculations. The
unusually large hyperfine splitting of the CF+ line therefore explains the
shape of the lines detected in the Horsehead nebula, without invoking intricate
kinematics in the UV-illuminated gas.Comment: 2 pages, 1 figure, Accepted for publication in A&
Systematic uncertainties in the determination of the local dark matter density
A precise determination of the local dark matter density and an accurate
control over the corresponding uncertainties are of paramount importance for
Dark Matter (DM) searches. Using very recent high-resolution numerical
simulations of a Milky Way like object, we study the systematic uncertainties
that affect the determination of the local dark matter density based on
dynamical measurements in the Galaxy. In particular, extracting from the
simulation with baryons the orientation of the Galactic stellar disk with
respect to the DM distribution, we study the DM density for an observer located
at 8 kpc from the Galactic center {\it on the stellar disk}, .
This quantity is found to be always larger than the average density in a
spherical shell of same radius , which is the quantity inferred
from dynamical measurements in the Galaxy, and to vary in the range
. This suggests that the actual dark matter
density in the solar neighbourhood is on average 21\% larger than the value
inferred from most dynamical measurements, and that the associated systematic
errors are larger than the statistical errors recently discussed in the
literature.Comment: 6 pages, 3 figures, matches published versio
Optical spectroscopy and the nature of the insulating state of rare-earth nickelates
Using a combination of spectroscopic ellipsometry and DC transport
measurements, we determine the temperature dependence of the optical
conductivity of NdNiO and SmNiO films. The optical spectra show the
appearance of a characteristic two-peak structure in the near-infrared when the
material passes from the metal to the insulator phase. Dynamical mean-field
theory calculations confirm this two-peak structure, and allow to identify
these spectral changes and the associated changes in the electronic structure.
We demonstrate that the insulating phase in these compounds and the associated
characteristic two-peak structure are due to the combined effect of
bond-disproportionation and Mott physics associated with half of the
disproportionated sites. We also provide insights into the structure of excited
states above the gap.Comment: 12 pages, 13 figure
Polarisation Observations of HO 620.701 GHz Maser Emission with Herschel/HIFI in Orion KL
Context. The high intensities and narrow bandwidths exhibited by some
astronomical masers make them ideal tools for studying star-forming giant
molecular clouds. The water maser transition at
620.701 GHz can only be observed from above Earth's strongly absorbing
atmosphere; its emission has recently been detected from space. Aims. We sought
to further characterize the star-forming environment of Orion KL by
investigating the linear polarisation of a source emitting a narrow 620.701 GHz
maser feature with the heterodyne spectrometer HIFI on board the Herschel Space
Observatory. Methods. High-resolution spectral datasets were collected over a
thirteen month period beginning in 2011 March, to establish not only the linear
polarisation but also the temporal variability of the source. Results. Within a
uncertainty, no polarisation was detected to an upper limit of
approximately 2%. These results are compared with coeval linear polarisation
measurements of the 22.235 GHz maser line from
the Effelsberg 100-m radio telescope, typically a much stronger maser
transition. Although strongly polarised emission is observed for one component
of the 22.235 GHz maser at 7.2 km s, a weaker component at the same
velocity as the 620.701 GHz maser at 11.7 km s is much less polarised.Comment: Accepted for publication in A&
Generalized Permutohedra from Probabilistic Graphical Models
A graphical model encodes conditional independence relations via the Markov
properties. For an undirected graph these conditional independence relations
can be represented by a simple polytope known as the graph associahedron, which
can be constructed as a Minkowski sum of standard simplices. There is an
analogous polytope for conditional independence relations coming from a regular
Gaussian model, and it can be defined using multiinformation or relative
entropy. For directed acyclic graphical models and also for mixed graphical
models containing undirected, directed and bidirected edges, we give a
construction of this polytope, up to equivalence of normal fans, as a Minkowski
sum of matroid polytopes. Finally, we apply this geometric insight to construct
a new ordering-based search algorithm for causal inference via directed acyclic
graphical models.Comment: Appendix B is expanded. Final version to appear in SIAM J. Discrete
Mat
BiTeCl and BiTeBr: a comparative high-pressure optical study
We here report a detailed high-pressure infrared transmission study of BiTeCl
and BiTeBr. We follow the evolution of two band transitions: the optical
excitation between two Rashba-split conduction bands, and the
absorption across the band gap. In the low pressure range, ~GPa,
for both compounds is approximately constant with pressure and
decreases, in agreement with band structure calculations. In BiTeCl, a clear
pressure-induced phase transition at 6~GPa leads to a different ground state.
For BiTeBr, the pressure evolution is more subtle, and we discuss the
possibility of closing and reopening of the band gap. Our data is consistent
with a Weyl phase in BiTeBr at 56~GPa, followed by the onset of a structural
phase transition at 7~GPa.Comment: are welcom
Nitrogen isotopic ratios in Barnard 1: a consistent study of the N2H+, NH3, CN, HCN and HNC isotopologues
The 15N isotopologue abundance ratio measured today in different bodies of
the solar system is thought to be connected to 15N-fractionation effects that
would have occured in the protosolar nebula. The present study aims at putting
constraints on the degree of 15N-fractionation that occurs during the
prestellar phase, through observations of D, 13C and 15N-substituted
isotopologues towards B1b. Both molecules from the nitrogen hydride family,
i.e. N2H+ and NH3, and from the nitrile family, i.e. HCN, HNC and CN, are
considered in the analysis. As a first step, we model the continuum emission in
order to derive the physical structure of the cloud, i.e. gas temperature and
H2 density. These parameters are subsequently used as an input in a non-local
radiative transfer model to infer the radial abundances profiles of the various
molecules. Our modeling shows that all the molecules are affected by depletion
onto dust grains, in the region that encompasses the B1-bS and B1-bN cores.
While high levels of deuterium fractionation are derived, we conclude that no
fractionation occurs in the case of the nitrogen chemistry. Independently of
the chemical family, the molecular abundances are consistent with 14N/15N~300,
a value representative of the elemental atomic abundances of the parental gas.
The inefficiency of the 15N-fractionation effects in the B1b region can be
linked to the relatively high gas temperature ~17K which is representative of
the innermost part of the cloud. Since this region shows signs of depletion
onto dust grains, we can not exclude the possibility that the molecules were
previously enriched in 15N, earlier in the B1b history, and that such an
enrichment could have been incorporated into the ice mantles. It is thus
necessary to repeat this kind of study in colder sources to test such a
possibility.Comment: accepted in A&
- âŠ