8 research outputs found

    Effects of nutrients, salinity, pH and light:dark cycle on the production of reactive oxygen species in the alga Chattonella marina

    Get PDF
    Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Experimental Marine Biology and Ecology 346 (2007): 76-86, doi:10.1016/j.jembe.2007.03.007.Experiments were carried out to investigate the effects of nutrients, salinity, pH and light:dark cycle on growth rate and production of reactive oxygen species (ROS) by Chattonella marina, a harmful algal bloom (HAB) species that often causes fish kills. Different nitrogen forms (organic-N and inorganic-N), N:P ratios, light:dark cycles and salinity significantly influenced algal growth, but not ROS production. However, iron concentration and pH significantly affected both growth and ROS production in C. marina. KCN (an inhibitor of mitochondrial respiration) and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (an inhibitor of photosynthesis) had no significant effects on ROS production. Vitamin K3 (a plasma membrane electron shuttle) enhanced ROS production while its antagonist, dicumarol, decreased ROS production. Taken together, our results suggest that ROS production by C. marina is related to a plasma membrane enzyme system regulated by iron availability but is independent of growth, photosynthesis, availability of macronutrients, salinity and irradiance.The work described in this paper was supported by a CERG grant from the University Grants Committee of the Hong Kong Special Administrative Region, China to RSSW (Project No. 9040864). Support for DMA is provided by U.S. National Science Foundation grant # OCE-0136861

    Future Climate Scenarios for a Coastal Productive Planktonic Food Web Resulting in Microplankton Phenology Changes and Decreased Trophic Transfer Efficiency

    Get PDF
    We studied the effects of future climate change scenarios on plankton communities of a Norwegian fjord using a mesocosm approach. After the spring bloom, natural plankton were enclosed and treated in duplicates with inorganic nutrients elevated to pre-bloom conditions (N, P, Si; eutrophication), lowering of 0.4 pH units (acidification), and rising 3 degrees C temperature (warming). All nutrient-amended treatments resulted in phytoplankton blooms dominated by chain-forming diatoms, and reached 13-16 mu g chlorophyll (chl) a l(-1). In the control mesocosms, chl a remained below 1 mu g l(-1). Acidification and warming had contrasting effects on the phenology and bloom-dynamics of autotrophic and heterotrophic microplankton. Bacillariophyceae, prymnesiophyceae, cryptophyta, and Protoperidinium spp. peaked earlier at higher temperature and lower pH. Chlorophyta showed lower peak abundances with acidification, but higher peak abundances with increased temperature. The peak magnitude of autotrophic dinophyceae and ciliates was, on the other hand, lowered with combined warming and acidification. Over time, the plankton communities shifted from autotrophic phytoplankton blooms to a more heterotrophic system in all mesocosms, especially in the control unaltered mesocosms. The development of mass balance and proportion of heterotrophic/autotrophic biomass predict a shift towards a more autotrophic community and less-efficient food web transfer when temperature, nutrients and acidification are combined in a future climate-change scenario. We suggest that this result may be related to a lower food quality for microzooplankton under acidification and warming scenarios and to an increase of catabolic processes compared to anabolic ones at higher temperatures

    Microalgae cultivation for phenolic compounds removal

    No full text
    corecore