154 research outputs found

    Formamide adsorption at the amorphous silica surface : A combined experimental and computational approach

    Get PDF
    Mineral surfaces have been demonstrated to play a central role in prebiotic reactions, which are understood to be at the basis of the origin of life. Among the various molecules proposed as precursors for these reactions, one of the most interesting is formamide. Formamide has been shown to be a pluripotent molecule, generating a wide distribution of relevant prebiotic products. In particular, the outcomes of its reactivity are strongly related to the presence of mineral phases acting as catalysts toward specific reaction pathways. While the mineral-products relationship has been deeply studied for a large pool of materials, the fundamental description of formamide reactivity over mineral surfaces at a microscopic level is missing in the literature. In particular, a key step of formamide chemistry at surfaces is adsorption on available interaction sites. This report aims to investigate the adsorption of formamide over a well-defined amorphous silica, chosen as a model mineral surface. An experimental IR investigation of formamide adsorption was carried out and its outcomes were interpreted on the basis of first principles simulation of the process, adopting a realistic model of amorphous silica

    Identification and characterization of Diaporthe spp. associated with twig cankers and shoot blight of almonds in Spain

    Get PDF
    [EN] Two hundred and twenty-fiveDiaportheisolates were collected from 2005 to 2019 in almond orchards showing twig cankers and shoot blight symptoms in five different regions across Spain. Multilocus DNA sequence analysis with five loci (ITS,tub,tef-1 alpha,calandhis), allowed the identification of four knownDiaporthespecies, namely:D. amygdali,D. eres,D. foeniculinaandD. phaseolorum. Moreover, a novel phylogenetic species,D. mediterranea, was described.Diaportheamygdaliwas the most prevalent species, due to the largest number of isolates (85.3%) obtained from all sampled regions. The second most frequent species wasD. foeniculina(10.2%), followed byD. mediterranea(3.6%),D.eresandD. phaseolorum, each with only one isolate. Pathogenicity tests were performed using one-year-old almond twigs cv. Vayro and representative isolates of the different species. Except forD. foeniculinaandD. phaseolorum, allDiaporthespecies were able to cause lesions significantly different from those developed on the uninoculated controls.Diaporthe mediterraneacaused the most severe symptoms. These results confirmD. amygdalias a key pathogen of almonds in Spain. Moreover, the new species,D. mediterranea, should also be considered as a potential important causal agent of twig cankers and shoot blight on this crop.Research funded by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), grants RTA2017-00009-C04-01, -02, -03 and -04 and with matching funds from the European Regional Development Fund (ERDF). G. Elena and C. Agusti-Brisach were supported by the Spanish post-doctoral grants "Juan de la Cierva-Formacion" and "Juan de la Cierva-Incorporacion", respectively. J. Luque and X. Miarnau were partially supported by the CERCA program, Generalitat de Catalunya. D. Gramaje was supported by the Ramon y Cajal program, Spanish Government (RYC-2017-23098).León Santana, M.; Berbegal Martinez, M.; Rodríguez-Reina, JM.; Elena, G.; Abad Campos, P.; Ramón-Albalat, A.; Olmo, D.... (2020). Identification and characterization of Diaporthe spp. associated with twig cankers and shoot blight of almonds in Spain. Agronomy. 10(8):1-23. https://doi.org/10.3390/agronomy10081062S123108Food and Agriculture Organization of the United Nationshttp://www.fao.org/faostat/es/#datDiogo, E. L. F., Santos, J. M., & Phillips, A. J. L. (2010). Phylogeny, morphology and pathogenicity of Diaporthe and Phomopsis species on almond in Portugal. Fungal Diversity, 44(1), 107-115. doi:10.1007/s13225-010-0057-xTuset, J. J., & Portilla, M. A. T. (1989). Taxonomic status of Fusicoccum amygdali and Phomopsis amygdalina. Canadian Journal of Botany, 67(5), 1275-1280. doi:10.1139/b89-168TUSET, J. J., HINAREJOS, C., & PORTILLA, M. T. (1997). Incidence of Phomopsis amygdali, Botryosphaeria berengeriana and Valsa cincta diseases in almond under different control strategies. EPPO Bulletin, 27(4), 449-454. doi:10.1111/j.1365-2338.1997.tb00664.xUdayanga, D., Liu, X., Crous, P. W., McKenzie, E. H. C., Chukeatirote, E., & Hyde, K. D. (2012). A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis). Fungal Diversity, 56(1), 157-171. doi:10.1007/s13225-012-0190-9Rossman, A. Y., Adams, G. C., Cannon, P. F., Castlebury, L. A., Crous, P. W., Gryzenhout, M., … Walker, D. M. (2015). Recommendations of generic names in Diaporthales competing for protection or use. IMA Fungus, 6(1), 145-154. doi:10.5598/imafungus.2015.06.01.09Gomes, R. R., Glienke, C., Videira, S. I. R., Lombard, L., Groenewald, J. Z., & Crous, P. W. (2013). Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia - Molecular Phylogeny and Evolution of Fungi, 31(1), 1-41. doi:10.3767/003158513x666844Gao, Y., Liu, F., Duan, W., Crous, P. W., & Cai, L. (2017). Diaporthe is paraphyletic. IMA Fungus, 8(1), 153-187. doi:10.5598/imafungus.2017.08.01.11Dissanayake, A. (2017). The current status of species in Diaporthe. Mycosphere, 8(5), 1106-1156. doi:10.5943/mycosphere/8/5/5Santos, L., Alves, A., & Alves, R. (2017). Evaluating multi-locus phylogenies for species boundaries determination in the genusDiaporthe. PeerJ, 5, e3120. doi:10.7717/peerj.3120Lawrence, D. P., Travadon, R., & Baumgartner, K. (2015). Diversity of Diaporthe species associated with wood cankers of fruit and nut crops in northern California. Mycologia, 107(5), 926-940. doi:10.3852/14-353Gramaje, D., Agustí-Brisach, C., Pérez-Sierra, A., Moralejo, E., Olmo, D., Mostert, L., … Armengol, J. (2012). Fungal trunk pathogens associated with wood decay of almond trees on Mallorca (Spain). Persoonia - Molecular Phylogeny and Evolution of Fungi, 28(1), 1-13. doi:10.3767/003158512x626155GARDES, M., & BRUNS, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113-118. doi:10.1111/j.1365-294x.1993.tb00005.xTravadon, R., Lawrence, D. P., Rooney-Latham, S., Gubler, W. D., Wilcox, W. F., Rolshausen, P. E., & Baumgartner, K. (2015). Cadophora species associated with wood-decay of grapevine in North America. Fungal Biology, 119(1), 53-66. doi:10.1016/j.funbio.2014.11.002O’Donnell, K., & Cigelnik, E. (1997). Two Divergent Intragenomic rDNA ITS2 Types within a Monophyletic Lineage of the FungusFusariumAre Nonorthologous. Molecular Phylogenetics and Evolution, 7(1), 103-116. doi:10.1006/mpev.1996.0376Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61(4), 1323-1330. doi:10.1128/aem.61.4.1323-1330.1995Weir, B. S., Johnston, P. R., & Damm, U. (2012). The Colletotrichum gloeosporioides species complex. Studies in Mycology, 73, 115-180. doi:10.3114/sim0011Udayanga, D., Castlebury, L. A., Rossman, A. Y., & Hyde, K. D. (2014). Species limits in Diaporthe: molecular re-assessment of D. citri, D. cytosporella, D. foeniculina and D. rudis. Persoonia - Molecular Phylogeny and Evolution of Fungi, 32(1), 83-101. doi:10.3767/003158514x679984Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. doi:10.1093/nar/22.22.4673Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547-1549. doi:10.1093/molbev/msy096Vaidya, G., Lohman, D. J., & Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27(2), 171-180. doi:10.1111/j.1096-0031.2010.00329.xRonquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., … Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology, 61(3), 539-542. doi:10.1093/sysbio/sys029Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-1313. doi:10.1093/bioinformatics/btu033Felsenstein, J. (1985). CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP. Evolution, 39(4), 783-791. doi:10.1111/j.1558-5646.1985.tb00420.xDuthie, J. A. (1997). Models of the Response of Foliar Parasites to the Combined Effects of Temperature and Duration of Wetness. Phytopathology®, 87(11), 1088-1095. doi:10.1094/phyto.1997.87.11.1088Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.2-3http://CRAN.R-project.org/package=agricolaeVan Niekerk, J. M., Groenewald, J. Z., Farr, D. F., Fourie, P. H., Halleen, F., & Crous, P. W. (2005). Reassessment ofPhomopsisspecies on grapevines. Australasian Plant Pathology, 34(1), 27. doi:10.1071/ap04072Lesuthu, P., Mostert, L., Spies, C. F. J., Moyo, P., Regnier, T., & Halleen, F. (2019). Diaporthe nebulae sp. nov. and First Report of D. cynaroidis, D. novem, and D. serafiniae on Grapevines in South Africa. Plant Disease, 103(5), 808-817. doi:10.1094/pdis-03-18-0433-reGuarnaccia, V., Groenewald, J. Z., Woodhall, J., Armengol, J., Cinelli, T., Eichmeier, A., … Crous, P. W. (2018). Diaporthe diversity and pathogenicity revealed from a broad survey of grapevine diseases in Europe. Persoonia - Molecular Phylogeny and Evolution of Fungi, 40(1), 135-153. doi:10.3767/persoonia.2018.40.06Varjas, V., Vajna, L., Izsépi, F., Nagy, G., & Pájtli, É. (2017). First Report of Phomopsis amygdali Causing Twig Canker on Almond in Hungary. Plant Disease, 101(9), 1674. doi:10.1094/pdis-03-17-0365-pdnMichailides, T. J., & Thomidis, T. (2006). First Report of Phomopsis amygdali Causing Fruit Rot on Peaches in Greece. Plant Disease, 90(12), 1551-1551. doi:10.1094/pd-90-1551cLópez-Moral, A., Lovera, M., Raya, M. del C., Cortés-Cosano, N., Arquero, O., Trapero, A., & Agustí-Brisach, C. (2020). Etiology of Branch Dieback and Shoot Blight of English Walnut Caused by Botryosphaeriaceae and Diaporthe Species in Southern Spain. Plant Disease, 104(2), 533-550. doi:10.1094/pdis-03-19-0545-reAdaskaveg, J. E., Förster, H., & Connell, J. H. (1999). First Report of Fruit Rot and Associated Branch Dieback of Almond in California Caused by a Phomopsis Species Tentatively Identified as P. amygdali. Plant Disease, 83(11), 1073-1073. doi:10.1094/pdis.1999.83.11.1073cFarr, D. F., Castlebury, L. A., & Pardo-Schultheiss, R. A. (1999). Phomopsis amygdali causes peach shoot blight of cultivated peach trees in the southeastern United States. Mycologia, 91(6), 1008-1015. doi:10.1080/00275514.1999.12061111Mostert, L., Crous, P. W., Kang, J.-C., & Phillips, A. J. L. (2001). Species of Phomopsis and a Libertella sp. occurring on grapevines with specific reference to South Africa: morphological, cultural, molecular and pathological characterization. Mycologia, 93(1), 146-167. doi:10.1080/00275514.2001.12061286KANEMATSU, S., YOKOYAMA, Y., KOBAYASHI, T., KUDO, A., & OHTSU, Y. (1999). Taxonomic Reassessment of the Causal Fungus of Peach Fusicoccum Canker in Japan. Japanese Journal of Phytopathology, 65(5), 531-536. doi:10.3186/jjphytopath.65.531Dai, F. M., Zeng, R., & Lu, J. P. (2012). First Report of Twig Canker on Peach Caused by Phomopsis amygdali in China. Plant Disease, 96(2), 288-288. doi:10.1094/pdis-04-11-0321Bai, Q., Zhai, L., Chen, X., Hong, N., Xu, W., & Wang, G. (2015). Biological and Molecular Characterization of Five Phomopsis Species Associated with Pear Shoot Canker in China. Plant Disease, 99(12), 1704-1712. doi:10.1094/pdis-03-15-0259-reMeng, L., Yu, C., Wang, C., & Li, G. (2018). First Report of Diaporthe amygdali Causing Walnut Twig Canker in Shandong Province of China. Plant Disease, 102(9), 1859-1859. doi:10.1094/pdis-01-18-0192-pdnSantos, L. (2017). Diaporthe species on Rosaceae with descriptions of D. pyracanthae sp. nov. and D. malorum sp. nov. Mycosphere, 8(5), 485-511. doi:10.5943/mycosphere/8/5/

    Electron hole formation in acidic zeolite catalysts

    Get PDF
    The formation of an electron hole on an AlO4H center of the H-ZSM-5 zeolite has been studied by a hybrid quantum mechanics/shell-model ion-pair potential approach. The Becke-3-Lee-Yang-Parr (B3LYP) and Becke-Half&Half-Lee-Yang-Parr (BHLYP) hybrid density functionals yield electron holes of different nature, a delocalized hole for B3LYP and a hole localized on one oxygen atom for BHLYP. Comparison with coupled cluster calculations including single and double substitutions and with perturbative treatment of triple substitutions CCSD(T) and with experimental data for similar systems indicate that the localized description obtained with BHLYP is more accurate. Generation of the electron hole produces a substantial geometry relaxation, in particular an elongation of the Al-O distance to the oxygen atom with the unpaired electron. The zeolite framework stabilizes the positive charge by long-range effects. Our best estimates for the vertical and adiabatic ionization energies are 9.6–10.1 and 8.4–8.9 eV, respectively. Calculations for silicalite, the all-silica form of ZSM-5, also yield a localized electron hole, but the energy cost of the process is larger by 0.6–0.7 eV. The deprotonation energy of H-ZSM-5 is found to decrease from 12.86 to 11.40 eV upon electron hole formationPeer Reviewe
    • …
    corecore