175 research outputs found

    Efficient production of the Nylon 12 monomer ω-aminododecanoic acid methyl ester from renewable dodecanoic acid methyl ester with engineered Escherichia coli

    Get PDF
    The expansion of microbial substrate and product scopes will be an important brick promoting future bioeconomy. In this study, an orthogonal pathway running in parallel to native metabolism and converting renewable dodecanoic acid methyl ester (DAME) via terminal alcohol and aldehyde to 12-aminododecanoic acid methyl ester (ADAME), a building block for the high-performance polymer Nylon 12, was engineered in Escherichia coli and optimized regarding substrate uptake, substrate requirements, host strain choice, flux, and product yield. Efficient DAME uptake was achieved by means of the hydrophobic outer membrane porin AlkL increasing maximum oxygenation and transamination activities 8.3 and 7.6-fold, respectively. An optimized coupling to the pyruvate node via a heterologous alanine dehydrogenase enabled efficient intracellular L-alanine supply, a prerequisite for self-sufficient whole-cell transaminase catalysis. Finally, the introduction of a respiratory chain-linked alcohol dehydrogenase enabled an increase in pathway flux, the minimization of undesired overoxidation to the respective carboxylic acid, and thus the efficient formation of ADAME as main product. The completely synthetic orthogonal pathway presented in this study sets the stage for Nylon 12 production from renewables. Its effective operation achieved via fine tuning the connectivity to native cell functionalities emphasizes the potential of this concept to expand microbial substrate and product scopes

    Lack of functional and expression homology between human and mouse aldo-keto reductase 1C enzymes: implications for modelling human cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over recent years, enzymes of the aldo-keto reductase (AKR) 1C subfamily have been implicated in the progression of prostate, breast, endometrial and leukemic cancers. This is due to the ability of AKR1C enzymes to modify androgens, estrogens, progesterone and prostaglandins (PGs) in a tissue-specific manner, regulating the activity of nuclear receptors and other downstream effects. Evidence supporting a role for AKR1C enzymes in cancer derives mostly from studies with isolated primary cells from patients or immortalized cell lines. Mice are ideal organisms for <it>in vivo </it>studies, using knock-out or over-expression strains. However, the functional conservation of AKR1C enzymes between human and mice has yet to be described.</p> <p>Results</p> <p>In this study, we have characterized and compared the four human (AKR1C1,-1C2, -1C3 and -1C4) and the eight murine (AKR1C6, -1C12, -1C13, -1C14, -1C18, -1C19, -1C20 and -1C21) isoforms in their phylogeny, substrate preference and tissue distribution. We have found divergent evolution between human and murine AKR1C enzymes that was reflected by differing substrate preference. Murine enzymes did not perform the 11β-ketoreduction of prostaglandin (PG) D<sub>2</sub>, an activity specific to human AKR1C3 and important in promoting leukemic cell survival. Instead, murine AKR1C6 was able to perform the 9-ketoreduction of PGE<sub>2</sub>, an activity absent amongst human isoforms. Nevertheless, reduction of the key steroids androstenedione, 5α-dihydrotestosterone, progesterone and estrone was found in murine isoforms. However, unlike humans, no AKR1C isoforms were detected in murine prostate, testes, uterus and haemopoietic progenitors.</p> <p>Conclusions</p> <p>This study exposes significant lack of phylogenetic and functional homology between human and murine AKR1C enzymes. Therefore, we conclude that mice are not suitable to model the role of AKR1C in human cancers and leukemia.</p

    Combined bezafibrate and medroxyprogesterone acetate: potential novel therapy for acute myeloid leukaemia

    Get PDF
    Background: The majority of acute myeloid leukaemia (AML) patients are over sixty years of age. With current treatment regimens, survival rates amongst these, and also those younger patients who relapse, remain dismal and novel therapies are urgently required. In particular, therapies that have anti-leukaemic activity but that, unlike conventional chemotherapy, do not impair normal haemopoiesis. Principal Findings: Here we demonstrate the potent anti-leukaemic activity of the combination of the lipid-regulating drug bezafibrate (BEZ) and the sex hormone medroxyprogesterone acetate (MPA) against AML cell lines and primary AML cells. The combined activity of BEZ and MPA (B/M) converged upon the increased synthesis and reduced metabolism of prostaglandin D2 (PGD2) resulting in elevated levels of the downstream highly bioactive, anti-neoplastic prostaglandin 15-deoxy Δ12,14 PGJ2 (15d-PGJ2). BEZ increased PGD2 synthesis via the generation of reactive oxygen species (ROS) and activation of the lipid peroxidation pathway. MPA directed prostaglandin synthesis towards 15d-PGJ2 by inhibiting the PGD2 11β -ketoreductase activity of the aldo-keto reductase AKR1C3, which metabolises PGD2 to 9α11β-PGF2α. B/M treatment resulted in growth arrest, apoptosis and cell differentiation in both AML cell lines and primary AML cells and these actions were recapitulated by treatment with 15d-PGJ2. Importantly, the actions of B/M had little effect on the survival of normal adult myeloid progenitors. Significance: Collectively our data demonstrate that B/M treatment of AML cells elevated ROS and delivered the anti-neoplastic actions of 15d-PGJ2. These observations provide the mechanistic rationale for the redeployment of B/M in elderly and relapsed AML

    Glial-Specific Deletion of Med12 Results in Rapid Hearing Loss via Degradation of the Stria Vascularis

    Get PDF
    Mediator protein complex subunit 12 (Med12) is a core component of the basal transcriptional apparatus and plays a critical role in the development of many tissues. Mutations in Med12 are associated with X-linked intellectual disability syndromes and hearing loss; however, its role in nervous system function remains undefined. Here, we show that temporal conditional deletion of Med12 in astrocytes in the adult central nervous system results in region specific alterations in astrocyte morphology. Surprisingly, behavioral studies revealed rapid hearing loss after adult deletion of Med12 that was confirmed by a complete abrogation of auditory brainstem responses. Cellular analysis of the cochlea revealed degeneration of the stria vascularis, in conjunction with disorganization of basal cells adjacent to the spiral ligament and downregulation of key cell adhesion proteins. Physiological analysis revealed early changes in endocochlear potential, consistent with strial-specific defects. Together, our studies reveal that Med12 regulates auditory function in the adult by preserving the structural integrity of the stria vascularis

    Loss of the mammal-specific tectorial membrane component CEA cell adhesion molecule 16 (CEACAM16) leads to hearing impairment at low and high frequencies

    Get PDF
    The vertebrate-restricted carcinoembryonic antigen gene family evolves extremely rapidly. Among their widely expressed members, the mammal-specific, secreted CEACAM16 is exceptionally well conserved and specifically expressed in the inner ear. To elucidate a potential auditory function we inactivated murine Ceacam16 by homologous recombination. In young Ceacam16-/- mice the hearing threshold for frequencies below 10 kHz and above 22 kHz was raised. This hearing impairment progressed with age. A similar phenotype is observed in hearing-impaired members of Family 1070 with non-syndromic autosomal dominant hearing loss (DFNA4) who carry a missense mutation in CEACAM16. CEACAM16 was found in interdental and Deiters cells and was deposited in the tectorial membrane of the cochlea between postnatal day 12 and 15, when hearing starts in mice. In cochlear sections of Ceacam16-/- mice tectorial membranes were significantly more often stretched out as compared to wild-type mice where they were mostly contracted and detached from the outer hair cells. Homotypic cell sorting observed after ectopic cell surface expression of the carboxy-terminal immunoglobulin variable-like N2 domain of CEACAM16 indicated that CEACAM16 can interact in trans. Furthermore, Western blot analyses of membrane-bound CEACAM16 under reducing and non-reducing conditions demonstrated oligomerization via unpaired cysteines. Taken together, CEACAM16 probably can form higher order structures with other tectorial membrane proteins such as α-tectorin and β-tectorin and influences the physical properties of the tectorial membrane. Evolution of CEACAM16 might have been an important step for the specialization of the mammalian cochlea allowing hearing over an extended frequency range

    Discovery of Tantalum, Rhenium, Osmium, and Iridium Isotopes

    Full text link
    Currently, thirty-eight tantalum, thirty-eight rhenium, thirty-nine osmium, and thirty-eight iridium, isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.Comment: To be published in At. Data Nucl. Data Table

    Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration

    Get PDF
    Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4(-/-)) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4(-/-) mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy

    Investigation of sex-specific effects of apolipoprotein E on severity of EAE and MS

    Get PDF
    Background Despite pleiotropic immunomodulatory effects of apolipoprotein E (apoE) in vitro, its effects on the clinical course of experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS) are still controversial. As sex hormones modify immunomodulatory apoE functions, they may explain contentious findings. This study aimed to investigate sex-specific effects of apoE on disease course of EAE and MS. Methods MOG35-55 induced EAE in female and male apoE-deficient mice was assessed clinically and histopathologically. apoE expression was investigated by qPCR. The association of the MS severity score (MSSS) and APOE rs429358 and rs7412 was assessed across 3237 MS patients using linear regression analyses. Results EAE disease course was slightly attenuated in male apoE-deficient (apoE −/− ) mice compared to wildtype mice (cumulative median score: apoE −/−  = 2 [IQR 0.0–4.5]; wildtype = 4 [IQR 1.0–5.0]; n = 10 each group, p = 0.0002). In contrast, EAE was more severe in female apoE −/− mice compared to wildtype mice (cumulative median score: apoE −/−  = 3 [IQR 2.0–4.5]; wildtype = 3 [IQR 0.0–4.0]; n = 10, p = 0.003). In wildtype animals, apoE expression during the chronic EAE phase was increased in both females and males (in comparison to naïve animals; p < 0.001). However, in MS, we did not observe a significant association between MSSS and rs429358 or rs7412, neither in the overall analyses nor upon stratification for sex. Conclusions apoE exerts moderate sex-specific effects on EAE severity. However, the results in the apoE knock-out model are not comparable to effects of polymorphic variants in the human APOE gene, thus pinpointing the challenge of translating findings from the EAE model to the human disease

    Dll1 Haploinsufficiency in Adult Mice Leads to a Complex Phenotype Affecting Metabolic and Immunological Processes

    Get PDF
    BACKGROUND: The Notch signaling pathway is an evolutionary conserved signal transduction pathway involved in embryonic patterning and regulation of cell fates during development and self-renewal. Recent studies have demonstrated that this pathway is integral to a complex system of interactions, involving as well other signal transduction pathways, and implicated in distinct human diseases. Delta-like 1 (Dll1) is one of the known ligands of the Notch receptors. The role of the Notch ligands is less well understood. Loss-of-function of Dll1 leads to embryonic lethality, but reduction of Delta-like 1 protein levels has not been studied in adult stage. METHODOLOGY/PRINCIPAL FINDINGS: Here we present the haploinsufficient phenotype of Dll1 and a missense mutant Dll1 allele (Dll1(C413Y)). Haploinsufficiency leads to a complex phenotype with several biological processes altered. These alterations reveal the importance of Dll1 mainly in metabolism, energy balance and in immunology. The animals are smaller, lighter, with altered fat to lean ratio and have increased blood pressure and a slight bradycardia. The animals have reduced cholesterol and triglyceride levels in blood. At the immunological level a subtle phenotype is observed due to the effect and fine-tuning of the signaling network at the different levels of differentiation, proliferation and function of lymphocytes. Moreover, the importance of the proteolytic regulation of the Notch signaling network emphasized. CONCLUSIONS/SIGNIFICANCE: In conclusion, slight alterations in one player of Notch signaling alter the entire organism, emphasizing the fine-tuning character of this pathway in a high number of processes

    Pleiotropic effects in Eya3 knockout mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In <it>Drosophila</it>, mutations in the gene <it>eyes absent </it>(<it>eya</it>) lead to severe defects in eye development. The functions of its mammalian orthologs <it>Eya1-4 </it>are only partially understood and no mouse model exists for <it>Eya3</it>. Therefore, we characterized the phenotype of a new <it>Eya3 </it>knockout mouse mutant.</p> <p>Results</p> <p>Expression analysis of <it>Eya3 </it>by <it>in-situ </it>hybridizations and β-Gal-staining of <it>Eya3 </it>mutant mice revealed abundant expression of the gene throughout development, e.g. in brain, eyes, heart, somites and limbs suggesting pleiotropic effects of the mutated gene. A similar complex expression pattern was observed also in zebrafish embryos.</p> <p>The phenotype of young adult <it>Eya3 </it>mouse mutants was systematically analyzed within the German Mouse Clinic. There was no obvious defect in the eyes, ears and kidneys of <it>Eya3 </it>mutant mice. Homozygous mutants displayed decreased bone mineral content and shorter body length. In the lung, the tidal volume at rest was decreased, and electrocardiography showed increased JT- and PQ intervals as well as decreased QRS amplitude. Behavioral analysis of the mutants demonstrated a mild increase in exploratory behavior, but decreased locomotor activity and reduced muscle strength. Analysis of differential gene expression revealed 110 regulated genes in heart and brain. Using real-time PCR, we confirmed <it>Nup155 </it>being down regulated in both organs.</p> <p>Conclusion</p> <p>The loss of <it>Eya3 </it>in the mouse has no apparent effect on eye development. The wide-spread expression of <it>Eya3 </it>in mouse and zebrafish embryos is in contrast to the restricted expression pattern in <it>Xenopus </it>embryos. The loss of <it>Eya3 </it>in mice leads to a broad spectrum of minor physiological changes. Among them, the mutant mice move less than the wild-type mice and, together with the effects on respiratory, muscle and heart function, the mutation might lead to more severe effects when the mice become older. Therefore, future investigations of <it>Eya3 </it>function should focus on aging mice.</p
    • …
    corecore