281 research outputs found

    [99mTc]Tc-PSMA-I&S-SPECT/CT: experience in prostate cancer imaging in an outpatient center.

    Get PDF
    Prostate-specific membrane antigen (PSMA) SPECT imaging in prostate cancer (PCa) could be a valuable alternative in regions where access to PSMA-PET imaging is restricted. [ <sup>99m</sup> Tc]Tc-PSMA-I&S is a new <sup>99m</sup> Tc-labeled PSMA-targeting SPECT agent, initially developed for radio-guided surgery. We report on the diagnostic use of [ <sup>99m</sup> Tc]Tc-PSMA-I&S-SPECT/CT in PCa. [ <sup>99m</sup> Tc]Tc-PSMA-I&S-SPECT/CT was performed and evaluated in 210 outpatients with PCa at a single center. Patients were imaged for biochemical recurrence (BCR, n = 152, mean PSA 8.7 ng/ml), for primary staging of high-risk PCa (n = 12, mean PSA 393 ng/ml), and restaging in advanced recurrent PCa (n = 46, mean PSA 101.3 ng/ml). Number and location of positive lesions were determined for the different subgroups. For BCR, detection rates were calculated, defined as the proportion of scans with at least one PSMA-positive lesion. PSMA positive lesions were detected in 65.2% of all 210 patients. Tumor tissue was mainly detected in lymph nodes (59%), in the bone (42%), and in the prostate (fossa) (28%). In the subgroup of patients referred for detection of BCR the detection rate increased from 20% at a PSA level < 1 ng/ml to 82.9% and 100% at PSA levels > 4 ng/ml and > 10 ng/ml, respectively. In the subgroup of high-risk patients referred for primary staging, 42% demonstrated metastatic disease. Restaging of advanced recurrent PCa revealed detectability of PSMA positive tumor lesions in 85% of the scans. [ <sup>99m</sup> Tc]Tc-PSMA-I&S-SPECT/CT was useful in PSMA-targeted imaging of PCa at various clinical stages. At low PSA levels (< 4 ng/ml), detection rates of [ <sup>99m</sup> Tc]Tc-PSMA-I&S-SPECT/CT in BCR are clearly inferior to data reported for PET-imaging and should thus only be considered for lesion detection if imaging with PET is unavailable. However, at higher PSA levels (> 4 ng/ml) [ <sup>99m</sup> Tc]Tc-PSMA-I&S-SPECT/CT provides high detection rates in BCR. [ <sup>99m</sup> Tc]Tc-PSMA-I&S-SPECT/CT can also be used for primary staging and for restaging of advanced recurrent PCa. However, further studies are needed to assess the clinical value in these indications

    In vivo imaging of pyrrole-imidazole polyamides with positron emission tomography

    Get PDF
    The biodistribution profiles in mice of two pyrrole-imidazole polyamides were determined by PET. Pyrrole-imidazole polyamides are a class of small molecules that can be programmed to bind a broad repertoire of DNA sequences, disrupt transcription factor-DNA interfaces, and modulate gene expression pathways in cell culture experiments. The 18F-radiolabeled polyamides were prepared by oxime ligation between 4-[18F]-fluorobenzaldehyde and a hydroxylamine moiety at the polyamide C terminus. Small animal PET imaging of radiolabeled polyamides administered to mice revealed distinct differences in the biodistribution of a 5-ring β-linked polyamide versus an 8-ring hairpin, which exhibited better overall bioavailability. In vivo imaging of pyrrole-imidazole polyamides by PET is a minimum first step toward the translation of polyamide-based gene regulation from cell culture to small animal studies

    Compact Cryogenic Source of Periodic Hydrogen and Argon Droplet Beams for Relativistic Laser-Plasma Generation

    Full text link
    We present a cryogenic source of periodic streams of micrometer-sized hydrogen and argon droplets as ideal mass-limited target systems for fundamental intense laser-driven plasma applications. The highly compact design combined with a high temporal and spatial droplet stability makes our injector ideally suited for experiments using state-of-the-art high-power lasers in which a precise synchronization between the laser pulses and the droplets is mandatory. We show this by irradiating argon droplets with multi-Terawatt pulses.Comment: To be published in Review of Scientific Instrument

    Influence of corticosteroid treatment on CXCR4 expression in DLBCL

    Get PDF
    BACKGROUND: CXCR4-targeted radioligand therapy (RLT) with [(177)Lu]Lu/[(90)Y]Y-PentixaTher has recently evolved as a promising therapeutic option for patients with advanced hematological cancers. Given their advanced disease stage, most patients scheduled for PentixaTher RLT require concomitant or bridging chemotherapy to prevent intermittent tumor progression. These (mostly combination) therapies may cause significant downregulation of tumoral CXCR4 expression, challenging the applicability of PentixaTher RLT. This study therefore aimed at investigating the influence of corticosteroids, a central component of these chemotherapies, on CXCR4 regulation in diffuse large B cell lymphoma (DLBCL). METHODS: Different DLBCL cell lines (Daudi, OCI-LY1, SUDHL-4, -5-, -6 and -8) as well as the human T-cell lymphoma cell line Jurkat were incubated with Dexamethasone (Dex; 0.5 and 5 µM, respectively) and Prednisolone (Pred; 5 and 50 µM, respectively) for different time points (2 h, 24 h). Treatment-induced modulation of cellular CXCR4 surface expression was assessed via flow cytometry (FC) and compared to untreated cells. A radioligand binding assay with [(125)I]CPCR4.3 was performed in parallel using the same cells. To quantify potential corticosteroid treatment effects on tumoral CXCR4 expression in vivo, OCI-LY1 bearing NSG mice were injected 50 µg Dex/mouse i.p. (daily for 6 days). Then, a biodistribution study (1 h p.i.) using [(68)Ga]PentixaTher was performed, and tracer biodistribution in treated (n = 5) vs untreated mice (n = 5) was compared. RESULTS: In the in vitro experiments, a strongly cell line-dependent upregulation of CXCR4 was observed for both Dex and Pred treatment, with negligible differences between the high and low dose. While in Jurkat, Daudi and SUDHL-8 cells, CXCR4 expression remained unchanged, a 1.5- to 3.5-fold increase in CXCR4 cell surface expression was observed for SUDHL-5 < SUDHL-4 /-6 < OCI-LY1 via FC compared to untreated cells. This increase in CXCR4 expression was also reflected in correspondingly enhanced [(125)I]CPCR4.3 accumulation in treated cells, with a linear correlation between FC and radioligand binding data. In vivo, Dex treatment led to a general increase of [(68)Ga]PentixaTher uptake in all organs compared to untreated animals, as a result of a higher tracer concentration in blood. However, we observed an overproportionally enhanced [(68)Ga]PentixaTher uptake in the OCI-LY1 tumors in treated (21.0 ± 5.5%iD/g) vs untreated (9.2 ± 2.8%iD/g) mice, resulting in higher tumor-to-background ratios in the treatment group. CONCLUSION: Overall, corticosteroid treatment (Dex/Pred) consistently induced an upregulation of CXCR4 expression DBLCL cells in vitro, albeit in a very cell line-dependent manner. For the cell line with the most pronounced Dex-induced CXCR4 upregulation, OCI-LY1, the in vitro findings were corroborated by an in vivo biodistribution study. This confirms that at least the corticosteroid component of stabilizing chemotherapy regimens in DLBCL patients prior to [(177)Lu]Lu-PentixaTher RLT does not lead to downregulation of the molecular target CXCR4 and may even have a beneficiary effect. However, further studies are needed to investigate if and to what extent the other commonly used chemotherapeutic agents affect CXCR4 expression on DLBCL to ensure the choice of an appropriate treatment regimen prior to [(177)Lu]Lu/[(90)Y]Y-PentixaTher RLT

    The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 in the p38/TNF-α Pathway of Systemic and Cutaneous Inflammation

    Get PDF
    Mitogen-activated protein kinase-activated protein kinase 2 (MK2) is a downstream molecule of p38, involved in the production of TNF-α, a key cytokine, and an established drug target for many inflammatory diseases. We investigated the role of MK2 in skin inflammation to determine its drug target potential. MK2 deficiency significantly decreased plasma TNF-α levels after systemic endotoxin application. Deficient mice showed decreased skin edema formation in chronic 2-O-tetradecanoylphorbol-13-acetate (TPA)-induced irritative dermatitis and in subacute 2,4-dinitrofluorobenzene (DNFB)-induced contact hypersensitivity. Surprisingly, MK2 deficiency did not inhibit edema formation in subacute 2,4-dinitrochlorobenzene (DNCB)-induced contact allergy and even increased TNF-α and IL-1β levels as well as granulocyte infiltration in diseased ears. Ear inflammation in this model, however, was inhibited by TNF-α neutralization as it was in the subacute DNFB model. MK2 deficiency also did not show anti-inflammatory effects in acute DNFB-induced contact hypersensitivity, whereas the p38 inhibitor, SB203580, ameliorated skin inflammation supporting a pathophysiological role of p38. When evaluating possible mechanisms, we found that TNF-α production in MK2-deficient spleen cells was strongly diminished after TLR stimulation but less affected after T-cell receptor stimulation. Our data suggest that MK2, in contrast to its downstream effector molecule, TNF-α, has a rather elusive role in T-cell-dependent cutaneous inflammation

    Oral chondroitin sulfate and prebiotics for the treatment of canine Inflammatory Bowel Disease: a randomized, controlled clinical trial

    Get PDF
    BACKGROUND Canine inflammatory bowel disease (IBD) is a chronic enteropathy of unknown etiology, although microbiome dysbiosis, genetic susceptibility, and dietary and/or environmental factors are hypothesized to be involved in its pathogenesis. Since some of the current therapies are associated with severe side effects, novel therapeutic modalities are needed. A new oral supplement for long-term management of canine IBD containing chondroitin sulfate (CS) and prebiotics (resistant starch, β-glucans and mannaoligosaccharides) was developed to target intestinal inflammation and oxidative stress, and restore normobiosis, without exhibiting any side effects. This double-blinded, randomized, placebo-controlled trial in dogs with IBD aims to evaluate the effects of 180 days administration of this supplement together with a hydrolyzed diet on clinical signs, intestinal histology, gut microbiota, and serum biomarkers of inflammation and oxidative stress. RESULTS Twenty-seven client-owned biopsy-confirmed IBD dogs were included in the study, switched to the same hydrolyzed diet and classified into one of two groups: supplement and placebo. Initially, there were no significant differences between groups (p > 0.05) for any of the studied parameters. Final data analysis (supplement: n = 9; placebo: n = 10) showed a significant decrease in canine IBD activity index (CIBDAI) score in both groups after treatment (p < 0.001). After treatment, a significant decrease (1.53-fold; p < 0.01) in histologic score was seen only in the supplement group. When groups were compared, the supplement group showed significantly higher serum cholesterol (p < 0.05) and paraoxonase-1 (PON1) levels after 60 days of treatment (p < 0.01), and the placebo group showed significantly reduced serum total antioxidant capacity (TAC) levels after 120 days (p < 0.05). No significant differences were found between groups at any time point for CIBDAI, WSAVA histologic score and fecal microbiota evaluated by PCR-restriction fragment length polymorphism (PCR-RFLP). No side effects were reported in any group. CONCLUSIONS The combined administration of the supplement with hydrolyzed diet over 180 days was safe and induced improvements in selected serum biomarkers, possibly suggesting a reduction in disease activity. This study was likely underpowered, therefore larger studies are warranted in order to demonstrate a supplemental effect to dietary treatment of this supplement on intestinal histology and CIBDAI

    Towards personalized treatment of prostate cancer: PSMA I&T, a promising prostate-specific membrane antigen-targeted theranostic agent

    Get PDF
    Prostate-specific membrane antigen (PSMA) is a well-established target for nuclear imaging and therapy of prostate cancer (PCa). Radiolabeled small-molecule PSMA inhibitors are excellent candidates for PCa theranostics-they rapidly and efficiently localize in tumor lesions. However, high tracer uptake in kidneys and salivary glands are major concerns for therapeutic applications. Here, we present the preclinical application of PSMA I&T, a DOTAGA-chelated urea-based PSMA inhibitor, for SPECT/CT imaging and radionuclide therapy of PCa. 111In-PSMA I&T showed dose-dependent uptake in PSMA-expressing tumors, kidneys, spleen, adrenals, lungs and salivary glands. Coadministration of 2-(phosphonomethyl)pentane-1,5-dioic acid (2-PMPA) efficiently reduced PSMA-mediated renal uptake of 111In-PSMA I&T, with the highest tumor/kidney radioactivity ratios being obtained using a dose of 50 nmol 2-PMPA. SPECT/CT clearly visualized subcutaneous tumors and sub-millimeter intraperitoneal metastases; however, high renal and spleen uptake in control mice (no 2-PMPA) interfered with visualization of metastases in the vicinity of those organs. Coadministration of 2-PMPA increased the tumor-to-kidney absorbed dose ratio during 177Lu-PSMA I&T radionuclide therapy. Hence, at equivalent absorbed dose to the tumor (36 Gy), coinjection of 2-PMPA decreased absorbed dose to the kidneys from 30 Gy to 12 Gy. Mice injected with 177Lu-PSMA I&T only, showed signs of nephrotoxicity at 3 months after therapy, whereas mice injected with 177Lu-PSMA I&T + 2-PMPA did not. These data indicate that PSMA I&T is a promising theranostic tool for PCa. PSMA-specific uptake in kidneys can be successfully tackled using blocking agents such as 2-PMPA

    Akt Suppresses Apoptosis by Stimulating the Transactivation Potential of the RelA/p65 Subunit of NF-kappa B

    Get PDF
    It is well established that cell survival signals stimulated by growth factors, cytokines, and oncoproteins are initiated by phosphoinositide 3-kinase (PI3K)- and Akt-dependent signal transduction pathways. Oncogenic Ras, an upstream activator of Akt, requires NF-κB to initiate transformation, at least partially through the ability of NF-κB to suppress transformation-associated apoptosis. In this study, we show that oncogenic H-Ras requires PI3K and Akt to stimulate the transcriptional activity of NF-κB. Activated forms of H-Ras and MEKK stimulate signals that result in nuclear translocation and DNA binding of NF-κB as well as stimulation of the NF-κB transactivation potential. In contrast, activated PI3K or Akt stimulates NF-κB-dependent transcription by stimulating transactivation domain 1 of the p65 subunit rather than inducing NF-κB nuclear translocation via IκB degradation. Inhibition of IκB kinase (IKK), using an IKKβ dominant negative protein, demonstrated that activated Akt requires IKK to efficiently stimulate the transactivation domain of the p65 subunit of NF-κB. Inhibition of endogenous Akt activity sensitized cells to H-Ras(V12)-induced apoptosis, which was associated with a loss of NF-κB transcriptional activity. Finally, Akt-transformed cells were shown to require NF-κB to suppress the ability of etoposide to induce apoptosis. Our work demonstrates that, unlike activated Ras, which can stimulate parallel pathways to activate both DNA binding and the transcriptional activity of NF-κB, Akt stimulates NF-κB predominantly by upregulating of the transactivation potential of p65

    IL-10 inhibits transcription elongation of the human TNF gene in primary macrophages

    Get PDF
    IL-10 plays a central nonredundant role in limiting inflammation in vivo. However, the mechanisms involved remain to be resolved. Using primary human macrophages, we found that IL-10 inhibits selected inflammatory genes, primarily at a level of transcription. At the TNF gene, this occurs not through an inhibition of RNA polymerase II (Pol II) recruitment and transcription initiation but through a mechanism targeting the stimulation of transcription elongation by cyclin-dependent kinase (CDK) 9. We demonstrated an unanticipated requirement for a region downstream of the TNF 3′ untranslated region (UTR) that contains the nuclear factor κB (NF-κB) binding motif (κB4) both for induction of transcription by lipopolysaccharide (LPS) and its inhibition by IL-10. IL-10 not only inhibits the recruitment of RelA to regions containing κB sites at the TNF gene but also to those found at other LPS-induced genes. We show that although IL-10 elicits a general block in RelA recruitment to its genomic targets, the gene-specific nature of IL-10’s actions are defined through the differential recruitment of CDK9 and the control of transcription elongation. At TNF, but not NFKBIA, the consequence of RelA recruitment inhibition is a loss of CDK9 recruitment, preventing the stimulation of transcription elongation
    corecore